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PREFACE

THE methods deseribed in this volume have heen developgda
and tried out in practice during more than ten years in the
Mathematical Laboratory at the Imperial College of Se@ence
and Technology. Although a great deal of it is hs:re pub-
lished for the first time, much of it has formed “part of the
systematic instruction of the many hundredg.\ of students.
who have passed through the Depa,rtm.e{nt of Mathematics
of that college during these years, >

This, the first volume, concerns 1tse§ only with the actual
solution of ordinary dlﬁerentzal,gqnatlons and the numerical
examination of many of t-hpii{.:p;'operties. The determina-
tion of Characteristic N,l)éﬁliers {Eigenwerte) and the in-
vestigation of Orthogenal Properties in general are, how-
ever, omitted. 'J.heset will be included in Veol. 11, since such
properties are pr\marﬂy of importance in connection with
the practical( solution of partial differential equations. It
is for thls\"z:eason also that no atéempt has bheen made to
examin€ )in detail the special properties of well-known
eq{laﬁbns (Legendre, Emden, Mathieu, etc.), except where
ph’eéé have illustrated general methods applicable to classes

<“o‘f equations of similar types.

Although frequent use has been made of Finite Difference
methods, little knowledge of that subject is here required,
and as far as possible such use has been accompanied by
full explanations of the meaning, and sometimes of the
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derivation of the formuie. The authors desire to express
their appreciation of the typing assistance so generously
given by Miss R. E. Taylor and the help in sketching some
of the integral eurves by Mr. A. W. King,

August, 1934,
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CHAPTER I

GRAPHICAL INTEGRATION OF DIFFERENTIAL
EQUATIONS
N

1. General remarks. R
2. Propositions relating to the integration of % = fil@, ¥}« _;.\

3. The isoclinals of & differential equation of the first ordet, )

3.1. Singular points on the curve flr, ¥) = 0. s,

3.2, The envelope locus of f(z, g, ¢) = 0.

3.3, General discussion of the integral curvesand isoclinals of
& differential equation of the first order.

8.4. Application to the practical problemof integration.

3.5. Approximations at points to the Gntegral curves and
isoclinals. )

N
L4

Q"

DESCRIPTIVE Process For FiRsT ORDER EQUATIONS

1. General remarks. R\
If « is an independent. variable, y a dependent variable,
. 7
%’ j—;ﬁ, .o g%, the iﬁi%t 7 differential coefficients of y with
A
respect to =, then\ a differential equation is a relation
between all on\'sbﬁ:le of the numbers

o ay &y
\:':'\’s. x’ y’ dx? - o= dxﬂ,
in “(i:gich one differential coefficient at least occurs,
AN
dy W
—y g _gE =
{1 —2% el +y+1=0

ate examples of differential equations.

The order of such an equation is defined as the order of the
highest differential coefficient present in it. The two cases
cited above, for example, are of orders one and two respectively.
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2 GRAPHICAL INTEGRATION OF

By a solution of the differential equation is here to be
understood, & function of o denoted y, such that if the

2
differential coefficients %, g—;; ete., are found and the valucs
inserted in the differential equation, the latter (now a
function of x alone) is identically satisfied.

For example, in the second equation written above

d? d O\
(—afga—sgi+y+1=0 &=
a solution is ¥ = — 1, since < ~\
@y &Py \‘
= 1 and T = 0, )

and the equation becomes, when thesq:?&l{les are inserted,
0 —xx1 -{—9:—1.,—}—’:}?_:0.

In the present chapter it is prgposed to regard the func-
tion y, given, not as an expligit expression written in terms
of powers of x, or literal fqnbﬁi’ons of  such as sin z or log =,
but by a graph in th(’e;.plzihe of the two rectangnlar axes

0X and OY. Remex‘f}%x‘ing that g;g from this point of view

. N\

is the slope of thfa\tangent to the curve at any point (z, ¥),

we may supr:e'se that from such a curve of ¥ against x,
N L d .

artother carve of .Ig gainst x may be drawn.

N
Wh‘a?;s the most aceurate and convenient method of
de[;ef;:m mng such a derived graph need not for the moment
be~considered. 1t will be dealt with in a later chapter.

\I¥ suffices merely here to assert that if the original curve is

everywhere continuong, then the curve for gg can certainly
d*y dby
' @i! &;‘3, ete, B
may a]sc! be.denved and plotted to the same base .

On this view of the funectional form of 3, it can now be
stated that a solution of the differential equation is found

be found. Similarly, the curves representing
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for a range of values of » when a graph has been obtained for

that range, such that when its ordinate is taken to represent
2

y,'and all the necessary derived curves for j_?;’ % .. .are

obtained, and these values are inserted in the differential

equation, the latter is zero at each value of x in the range.

A few matters immediately call for comment. In the
first place, be it noted that the final verification of the{
solution is not, ag in the previous case, that terms in the
final form of the difierential equation are explicit eXPresions
in x, which reduce to zero in the aggregate, but_are“mere
numbers which when collected together sum up, to zero.
The verification, thercfore, in this case is of 'gil.'airithmetric
rather than of an algebraic nature. \%

In the second place, and as a consequence, another
distinction is apparent between the t r’),%ypes of solution in
their verification. In the case of $g)graphical form of the
solition it is evident that a grapb-tan at best represent a
function to a restricted degreg-of*accuracy. The limitation
arises in the last resort fro;ﬁfthe severely practical difficulty
of placing two points oira chart, closer together than a
certain minimum digtdnce. This implies 2 degree of
indefinitencss in, tHe) graphical solution which may con-
vement]y be repyeﬁe ted as a margin of error in that funcéion.
At least a corresponding margin of crror will be present in
each of th:g\raphs for %, %z% derived from this necessarily
apprgﬁxiniﬁte form for y. In point of fact the errors in the
de;’i;?e}i curves may be much greater, the magnitude depend-
jigs especially on the particular method that is adopted in

“\estimating the values of the differential coefficients. This
will be discussed later. For the moment it suffices to remark
that when these values of y and its differential coefficients
are inserted in the equation the terms may not sum up to
vero at each value of z, but reduce to a number which is
gmall in comparison with the individual terms that go to
make up the sum.

These considerations suggest that, for precision, & modifica-
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tion in our definition of a solution of the differential equation
must be made,

Suppose g is graphed as a funetion of = and suppose, at
each value of x, a small possible margin of error ¢ () is
attached. ~This will specify in the x — y plane not really
an individual curve but a region within which the curve
lies. If then within this narrow region there exists a curve,
such that when the values of y and g—y, d-z—y, ete. deriwed

x dx? 2\
from it are inserted in the equation, the latter is accdtately
satisfied, we shall say that the original graph about-which
the region was defined is a solution of the/différentiai

equation, with a margin of error « (z). N
On this definition it is evident that i practice three
things are required : PN

(i) A method of determining thg";»ﬁproximate solution
a8 & graph of y. O

{ii} An estimate of the marginol error ¢ (=} at each value
of z. N\

(ili) An assurance that sothewhere within the band defined

by y and « (x} an adeurate solution of the differential
equation exigfs)

:J

The first step inthe determination of the solution of the
differential equation is, if possible, to find a rough approxima-
tion to its soldfion and some idea of the accuracy of that
approximation. This will in general be carried out by
finding myper and lower limits within which the solution
mustle.” Whether any further examination is necessary
will\of course, depend on the accuracy to which the solution
ig\&esired. The second step, therefore, congists in refining
\ th.js approximate estimate, and for this Purpose, as for the
initial step iiself, many methods are available, but the
particular method that should be chosen will depend on
certain factors. In the firgt place, the range of the inde-
pendent variable for which the solution is required will
affect the selection; but even more than this, the degree
of accuracy with which the solution is desired over that
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range will exercise & predominating influence in the choice.
Tn addition to this there are such factors as the labour
involved in the actual computation by any method, whether
a computing machine is or is not available, and whether the
method is suitable for mechanical computation ; and finally,
the number of intermediate positions along the range of
the independent variable for which the solution is desired.
All theso factors, and others more intimately connected
with the exact nature of the differential equation itself)
enter into the choice. )

As the subject develops and alternative meth’dﬁs are
offered. for the determination of a solution these points
will require to be specially noted. We progeed, therefore,
to the first step, to determine a Tough apprﬁ:%mation to the
solution and upper and lower bounds to\jts accuracy. Tor
this purpose it is simpler to bear in rpiﬁi’a geometrical or a
graphical interpretation of the vaxiables and of the relation-
ship involved in the equation. ()"

"

2. Propositions relating to "tl;e'}'integration of % = flx, y}.
If (x, y) be the co—{ﬁ'dinates of a point lying on a curve ir
a plane, then pi{?g represents the slope of the tangent a

{z, ¥) to thatlchrve.
A differetitial equation of the first order

R0 f |
{\Y = Hx, . . . ' .
¢ p =[x, ¥) (L
aftaches a certain direction to every point in the plane.
(NVIE a family of curves can be found such that at ever
\“point of every member, condition (1) is satisfied, the
that family is called the integral family of curves of th
differential equation.
Since a relation of the form

dlx, g p) =0 . . . . . (2}

can be reduced to a set of equations of type (1) merely b
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solving algebraically for p in (2), we may refer to the integral
curves of (2) in the same sense.

If equation (2) is algebraic in p of order 7, then at any
point (¥, y) there are n values of the slope, and » branches
of the integral curves pass through that point. No two
integral curves formed by pursuing corresponding branches
across the field can meet. For such branches correspornid
because they are solutions of the same differential cqnation
(1), and p is then uniquely determined at each pomt, (¢
follows that through a given point there can be one andenly
one solution of the equation (1). A

Some useful consequences follow immediately, from these

~considerations, RA4
(1) In the two equations \%

dy dz & \%
T = Flz,4) and dEﬁF}x, 2)
iy, =2, at x = x,, then _=’z, “since the solutions are
unique. N

Hence i at x = g, Yo 322, then everywhere y > z,
since they cannot crogs, ~.*

(ii) In the equations<"

dz

dy ¢ e \J
o -—\E‘(x, ¥) and &=

AF(x, 2)
it A>1 and<y
onwards. /)™
The, twp solutions have only one point in common, viz. the
star;:,i point @ = a, y = Yo 2 = z,.
\,(‘i.ii,) In the equations

e\ ¥

)| d
\ L=Tey ad Ly pe

0 =2 at ¥ =, then 2~ 4 from there

where
$lx) > A >1

then if y and 2 start at g common point, from there onwards
z >y and they never meet again,
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(iv) Throughout a region of the (¢, y) plane which includes
a point through which the solution of

d
T =Jwy)
is required, if
Mz, y) > flx, y) > mix, y),
then the required solution lies intermediately between that of

dy _
(1;3 - M(xs y) @
dy R,
and da = m{z, ¥). \ s\
Example 1.—The solution of AN
dy \ o

Ie (z + ye™)

which passes through (0, 0} and lies in‘the first quadrant,
between y = 0 and y = 0-3 is intermediate between that of

dy _ )Y
de = Y
and ‘ég:;'m + ye 3,

The solutions of thefe linear equations are respectively
) yijﬁf\—- 1 —x- €&

and X \b; efer™" — 1] — el

At {he limits.0f the range, viz. at © = -5, these, therefore,
provide aghipper and lower limits to the value of ¥, the
two nufabers 0-1487 and 0-1390, whose mean, (1438 is
cert-%(&y less than 3-5 per cent. In error.

,}':.:.xample 2 The solution of

de 22 fa* «*+af
for the range o to Ag lies between

dy ¥ dy _ Y
which are both soluble equations, since

- _x_ﬁ__<M___Nf_
2—-m<x2+ag -—1+}‘2
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{v} In the two equations
dy dz
i Flz,y) and Tz = Flz, z) + A

where A > 0, if at & = =, Y =1Yp 2 =2z, then z >y and

. dz
always remaing so, since where they would meet again I
would be again greater than g—g

{vi) In the equation O\
dy _ . ~sj\ '
I = Fl@, ) + () AN
if M > y{r) >m >0, K?,

(4,
then the solution of the equation lies between that of

d d e
Y =Fep)+m and d_g‘:.\:&x,y)m.

Example 3.—In the equation ()"
@ _ x4 y? N i

2t t a2 PE a2 T g e

the solution lies between those of

&

dy g\ &y ¥
"”‘_”’{'\%nﬁ wd =1t ot s

taking the range,of a to-be 0 4o « . .

The simplemethods just outlined may suffice to indicate
roughly the general trend of any particular solution, although
they are hot necessarily very useful in practice, 'This arises
fromnthié fact that in effect we have made the determination

ofifie upper and lower bounas of the solution dependent on

s does not assist ug much, if at all.
e turn, therefore, to a, consideration of yet another method,
In this case of a graphical nature, which will provide us not
only with a knowledge, detailod up to a certain degree, of
any one particular solution of the equation, but with a
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picture of the general trend of all the solutions of the
equation. For many purposes it is precisely this general
knowledge that is required rather than detailed information
about any one special solution passing through a particular
point.

3. Isoclinals of a differential equation of the first order.

It is necessary that the conclusions, which will presently /
be drawn in the general discussion of the equation
#Hz,y, p) =0 from a geometrical standpoint, should ‘\be
sxpressed in concise mathematical form, and for this pi;;r\pose
the two following paragraphs are required. N
3.1. Singular points on the curve fiz, y) = 0. .u.f\‘

Consider the equation f{z, ¥) = 0.
H this be solved for y in terms of 2 and this valuedof y be substituted
in the equation A

L =f($, Y, “':\“

u will vanish identically. It follows, t.hf}réfore, that the derivatives
of % with regard to z will also vanish.y

of L @y _

a_x+6ydx_ P )
or N =0
e \i’ yo=—ff . - - « - - &1

For any eurve _{(}y) =0, (3.1) in general determines the valua
of the gradient g/
Differentiating (3) again,

..\";‘\'“fxx + 2fxy~y'+fw.y'= +fy'y” =0 . ce ()
Now (,%U fails to determine i’ when f, = f, = 0; in which case
,: fur 4 Yt Lyt =0 . . . (£.1)

o é@si’this equation in general determines the two possible slopes &t
\ & double point. .
In these circumstances there are three squations

fz=0
.f=-0} N ()
flz g} =0

to be =atisfied, and sinee two equations only are necessary to
determine x and g, it is clear that any points which satisly equations
{5) are necessarily singular to the curve.
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3.2. The Envelope locus of f(z, y, ¢) = 0,

If f{x. 9, ¢} = Q represent a system of curves obtained by giving
real values {0 ¢, then

¥ _ o {6}
(oM

f{x’ vc) =0
Y " }

repr.sents the envelape of the system f{z, ¥, ¢} = 0.
Consider the interscetions of the curves

f@ g ¢) = 0 and flz, y, ¢ + 3¢) = 0.

O\
0 =flm, g0+ 8¢)=fla,y, ¢) + 5?; [ftx, 5. €)] . 8c 4 13eh =

whers 2 is finite in general. &N
Thus when 8¢ tends to zera o\

3%-1(% ney=~0.

1t follows that eguations (6) determine th{\]bcus of the ultimate
intersections of each member of the systhn.with the neighbouring
member. %

Every membcr of the system f{z, Yy c)t = 0 touches this losus.
For the slope at & point {1, 41 oI &y4s given by

Mewyued + il yeed®—0 . . ()
The slope at the same poing® on' the locus (6) is determined from

RECNSTEN L@ ¥ ¢1) % + fol# 1 1, Cl)gxi =0. (8
¢ A\J 1

But: from equatim:}s\}‘ﬁ)', fo=0

Henee (7) angd (& Pdetermine identical velues for g—g
\ ¢/

%dof a differential equation of the frst order.

V‘A first order differential equation
4 n\. .
a \¥4

O

33. Gereral discussion of the integral curves and isoclinals

4 qu(x, Y. :p) =0 . * * (9)
besides defining an integral system also determines a gystem
of curves

.y =0 . . . . (@1
This may be regarded as g 8ystem which includes the loci

of successive points on the integral curves for which %
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has the constant value ¢. Thus integral curves which
intersect any one of the isoclinal system, as (9.1) is called,
&ll do so at the same slope. By sketching the isoclinal
system (9.1) and by attaching to each member its appropriate
value of ¢, & general survey of the integral solutions of (9)
may be rapidly laid out as follows.

We begin at any point on one of the isoclinal curves and .
imagine an infinitesimal line drawn in the direction specified
by the value of ¢. In general this line will meet a neigh
bouring isoclinal which specifies a new direction differing
infinitesimally from the first direction, From the point
where the second iscclinal is met by the first infinitesimal
line draw another infinitesimal line in the dixeebion specified
by the second isoclinal, If this process is repeated from
isoclinal to isoclinal, a curve is obtained\llaving values of
p at every point {(x,y) on it which dpproximately satisfy
the differential equation (9), and\dhis curve is therefore
a rough approximation to a golifion of the differential
equation, 1.e. it is an integral cuttve of the differential equation,
The curve is, of course, (liéveioped on hoth sides of the
isoclinal on which the.inttial point was chosen. If any
line be drawn across{@\region of the plane in which the
equation ¢(x, ¥, pkﬁ\o’ determines p at every point uniquely,
then from every point of this line one integral curve will
start out andy faverse the region. There will, in fact,
be a one-fdld infinity of integral curves of the equation
Hlx, ¥, p).::\f) and the solution of the latter must be of the

type ‘Rxf ¥) =c.

”h}a olass of solution dealt with so far does not exhaust
ghe “posaible solutions of a differential equation of the type
Sonsidered here. If a solution of the equation be regarded
as any curve whose co-ordinates and slope at each point
satisfy the differential equation at each point, then there
may exist solutions which do not appear as members of
the one-fold infinity of curves mentioned above. Such
singular solutions will he dealt with in due course.

In general the direction specified by an isoclinal differs
from that of the isoclinal itself and the integral curve is
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continuous on both sides of the isoclinal at the peint of
crossing. This 35 not the case, however, when neighbouring
ssoclinal curves intersect. Consider a point in the neighbour-
hood of the envelope of é(w, %, ¢) = 0. Members of the
family of curves ¢(w, y, ¢} = 0 do not in general cross the
envelope of the family in the neighbourhood of its point of
contact with the envelope. Thus the contiguous curves
¢ — de, ¢ and ¢ 4+ de all lie on the same side of the envelope
and all touch it. Since the slope p is not in general tigd
of the envelope (which is that of the isoclinal itself)\tih
integral curve should cut across the envelope. There is,
however, now no contiguous isoclinal on the otlier side of
the envelope and consequently the integral curvé-has either
a cusp or a-stop point. \/

QY

&
If :ebe"envelope ig the curve F and the isoclinal touches it

at & and PQ be an infinitesimal part of the integral curve
ma}j P, then in general two contiguous isoclinals may be
S dound to pass through @ and they touch the envelope on
opposite sides of P. Hence, beginning at P to draw the
integral curve, on reaching Q there are two possible direstions

for the integral curve each differing infinitesimally from c.
}’ursuing these two branches of the curve back from P,

1t appears that an envelope locus of the isoclinals is in general

a cusp loous of the integral curves. This envelope locus,
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the eliminant of ¢(x,y,¢) =0 and g-f: 0, is also the p-

discriminant of the equation $(x, y, p) = 0.

The p-discriminant of $(x,y,p) =0 is in general @ cusp
locus of the integral family and conversely if E is a locus of
cusps of the integral family it is part at least of the envelope
of the isoclinal fumily. Since two neighbouring isoclinals
which touch the envelope of the isoclinals cut at one point, "
only, this locus oceurs once only in the p-discriminant. Ifthe
direction of p is adso that of the isoclinal at P, and thetefore
the direction of the envelope, the direction p does wot cross
the envelope and there is consequently no difcontinuity
of the integral curve which therefore touches the envelope
a-"t' P. S 3

Now the direction of the isoclinal fami\.ly is given by

od | 8¢ dy rpn
Hence the condition for the p-r{?lécrimémm being an envelope
locus jor the integral family "

26 0

This conditionQiE\\m general both necessary and sufficient,
i.e. the slopeof the integral curves as defined by
&z, y, p) 2 %'must be the slope of the jsoelinal family along
the enyélope locus. As before, this envelope locus of the
integraliourves occurs once only in the p-discriminant.

The p-discriminant has been shown to be simultaneously

_the envelope locus of the isoclinals and a cusp locus of the

>

integral curves; but the p-diseriminant may also include a
locus of double points of the isoclinal family—in general &
node locus; for at such points the same value of p is obtained
twice where the isoclinal crosses itself. In general the iso-
clinals and the integral curves will again cross the
p-diseriminant.

If P and @ have meanings as before at @ there will again
be two possible directions for the integral] curve. There
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is also o corresponding point @’ on the other side of the
p-discriminant where two neighbomring curves now give
@". Hence at @ also there are two Possible directions for
the integral curve. The integral curve has therefore two

branches which touch at P ie P ig g tac-point for the
integral curve. Hence 5 node locus of the isoclinal family
13 in general a tac locys of the integral family,

The slope of the isoclihals is given by

OO -+ o¢ dy

\\ - aﬂ’: 5‘5 . JSE == 0.
{in order thabthis shall be satisfied by two different vajues
Yy P :
Of (ﬂ’ "'\'“ >
:n\.‘. a¢

& 6z~ (10)
o) |
G o9

o o¢ .
for e and 5 are single valued functions of % and .

This. is tjhe cond.jtion that there should be a node locus
of t}_xe isoclina) fal.n}ly and a tae logus therefore of the integral
family. In additign to the equations {10), of course

2
$(@, y, ) = 0 ang §g= 0. Now in generql it an isoclinal
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pass through P, there is one and only one curve contiguous
to it which passes through a given point which is contiguous
to P, but if P is e fac-point of the integral family and 9
is & contiguous peint on both the integral curves which
touch at P, then because the rate of variation of p is in
gencral different for the two integral curves, fwo contiguous
isoclinals must pass through @, and similarly for @’ on the
other side of P from @, and the isoclinals which give ¢ a.nd.
)" are therefore branches of the same curves.

In the opposite figure P, @, R and P,, @,, R, are’ ﬁwo
sels of three points in which the central loop cuts its
neighhours. N

The points B, R,, etc. ultimately form an envelope locus
of the isoclinal family, and therefore in gengal the integral
curves have this locus as a cusp locus. \Fhese loci oceur
once in the p-discriminant as a]read‘y\lndleated When
considering the points P, @ and £} Ql, however, it should
be noticed that the locus of the nodes on the izoclinals ig
the curve obtained when the ‘eurves through ¢, @, etc.
and P, P, eto. coincide in the limit. Tt is to be expected
that (since each loop cutéban adjacent loop twice near a
nede) the node locus wilhoccur twice in the p-discriminant.
Thus the node locus® of isoclinals or the tac locus of the
integral family oceur twice in the p-diseriminant.

Again, if the doops above be supposed to become smaller
and smallerythe case in which the isoclinals fold back along
themselvesyis/obtained, giving a cusp locus of the isoclinals.
It followdthat this degenerate case occurs three times in the
p-dis¢fitninant, since the three curves then R, R;, etc.,
Q, QY etc., P, P,, etc., coalesce. In this case the tac locus

..sof Jthe 1ntegra,1 curves degenerates into a locus of isolated
double points while the cusp loeus of the integral family
remains as a cusp locus.

The branches of the isoclinal curve at a node locus divide
the plane into two regions one of which contains the
p-diseriminant and one does not. There are three kinds of
tac loci according as the direction of the integral curves
lie in the former or the latter or along an isoclinal.
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a. I it lies in the region not containing the p-discriminang
the two integral curves have opposite curvature,

b, If it lies in the region containing the p-diseriminant
the curvature of the two curves is the same,

¢. If the direstion of the integral curve Hes along the
isoelinal there i8, as will he shown, a point of
inflection on one of the branches of the integral
eurve, A

@ (& © 8

Ifthe dquble point jg(aiibint of the first, order, the directions
the tangents to the isoclina] System are given by ¢ where

,’aaés 82¢ 32¢
~\g\}3h?;§+2q55:§§+§§= 0.

Q) "th:; P_'di?eﬁmjﬂaﬂt_is % ousp loeus for the isoclinal family,
and similar roasoning to the ahoye shows that it is also &

In every case except

Whel_l the direction of both famjlieg is the same, the eurves
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If, however, at any point the direction of the integral
curve is the same as that of the cusp locus there ig in general
a tec-point on the integral family, the contact being of
higher order than the first. If the roots are imaginary, the
p-discriminant is a locus of conjugate points for both families.

If at any point P, which is not on the envelope locus of
the isoclinal family, the direction of the integral curve is
the same as that of the isoclinal through P, the contiguous
points @ and @’ are in general both on the same side of the
isoclinal but on opposite sides of the point P; thus the sign
of variation of p ochanges on passing through P, i.e. there is
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in general an inflection on the integral curve. Thig demands

g

that 3 + p@ = 0.
This is, however, equivalent to the usual condition for an
inflection on the integral curve; for

% 1w 4 85, | % 3

de - 2, +2tdp = 0,

oz oY ap O\
but along an integral curve dy — # . dz, hence O

=G~ 75/ = E’;;\E'f

: dp . 3 : &
Aecord.mgly, dz =0 if o+ 0, Whl({h\\a:long with pre it
is the wusual condition for g point of fnflection.

Even if gg =0 it can bhe séen” from geometrical con-

siderations that there is still a;ffoinb of inflection, unless the
#-diseriminant is ap envelepe locug for the isoclinal family.
If the direction of the integral curve lje along the isoclinal
at any point, and ifGhe tangent at the point meet the
isoclinal in # contigious points, then it also meets the
integral curve e+ 1) contiguous points, Tp particular
the locus of pothis of contger of integral curves with isoclinals
is @ locus of tiflections of the integral Curves,

This loghg is, of course, ohtained by e]jmina,ting P between
the equations
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nature of the solutions. We may summarise the steps as

follows :
d;
f(x, ¥ Eyc) = 0.
(a) Sketch the isoclinal system

f (= ¥, ¢)=0.

(b) Draw a series of small parallel lines across each | A\
member of this system at the appropriate slope ¢.

(¢} In particular, examine the curve flx, y, 0) = 0 whielnJ)
will be & locus of maxima or minima on the inte§ral
curves, N

(d) Find the locus of inflections of the integral Suyves by
eliminating p between “\

af + Paf

flx,y,p) =0 and o @s.ﬂ,

and verify (i) that the integr:ﬂ,\cﬁrves change the
sign of their curvature ad phey cross this line,
(ii) that this locus is alstthe point of contact of
the isoclinals with theintegral curves.

(¢) Find the envelope locugtof the isoclinal system, and
by approximatisg\to the integral curves at any
point on this(éﬁwlope, examine the nature of the
integral cutves there. (In general this should be
a locus of ‘eusps.)

(f) Find a-ppxo’ijmations to the integral curves at such

positiohs as
) (0" (i) The origin of co-ordinates.
O (ii) Any point on the X axis,

) \’j."' (ii} Any point on the ¥ axis.
<‘ (¢) If any doubt still remains concerning the general
trend of the system, find approximations to the

integral curves at arbitrary points on any arbitrary
straight line through the origin, ¥ = mz.

Note 1.—From the foregoing remarks the p-diseriminant
in general may be written in the form
B.C.T?2=0
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where F = 0 represents an envelope locus for the integral
ourves, ' =0 a cusp locus and 7' —= ¢ 5 tac locus. 'The
form of the p-discriminant may therefore be taken as a guide
to its nature,

Note 2—In the case of the isoclinals of a first order
differential equation it has now been shown that in general
the loci oceur in the c-discriminant in the form \

E N2 2=y O\
where £ = 0 represents the envelope locus of the i8dclinals
{in general a cusp locus of the integral curveshoN = 0 a
node locus and ¢ — 0 5 cusp locus, K7,
~N

Drawing the integral curves)
Consider the differential equation, ,\J
VAN

* :’
. A d
Tsoclinals and I?F?grma} curves of Eg =y,

0.5
‘A@ 0

The isoclinals of this equation gre given by

and are therefore hyperbolas in the first and thirg quadrants
of the © — 5 plane. Consider those in the firsy quadrant,
and suppose that they are drawn from 0= to ¢ 4,
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In order to draw the integral curves rapidly it iz convenient
to draw a line OQ parallel to the positive direction of the
axig of x, and taking this as unit length, QR is drawn per-
pendicular to 0@ of length 4 units. QR is graduated in
units, and hence any line such as OP has a gradient of PQ
units. Using this figure, any gradient is readily transferred
to the appropriate isoclinal. Along the isoclinal corre-
spending to '
xy = O, \
short lines are drawn at a number of points crossing the
isoclinal and having the gradient €,. This process is
repeated for the whole field of isoclina.ls until 4h8 region
is mapped out as a directional field. Curves atelriow drawn
having the slopes specified by the systend{0f short lines
drawn in the above manner. These curyes'are approxima-
tions to the integral curves in the firsy’ q}:ad:ant

Example 1.—Consider the equatlon

S,y p) = 2"+ 2z - y)p- 22y + 2+ 20 = 0,
of __ —
T 2p + 2(x 'f" 3 = 0.

The p-discriminant ig xz(x —1)=0.

This suggests © = Aas a cusp locus of the integral eurves
and an envelope egus of the isoclinals. It also suggests
that x = 0 is atac loous of the integral curves and a node

locus of the 1sgc]inals
Now if #51, (p +y + 1)° = 0, and hence the equation

gives twonéqual values of p at all points along @ = 1. Also
along— 1, % for the isoclinals is infinite. This confirms
O,,j;lié.'l’c;cus =1,
. For a tac locus of the integral curves or node locus of the
1soclinals
o

dx
of _
ay
together with f(z, y, ¢} = 0 along the node locus.
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Now %:2}9—[—29{—5—33:9
and %-2}:—[—22:—}-23;.

These in conjunction with fz, y, ») = 0, and 22 = ¢
vanish identically and verify the node loous, N\
Example 2, )

2 N 0. O
f(xs Y, 33) = {P - x) - 2(3; - _2'_) ‘_""}‘ v
of 0
op =M —2) L7
Hence the p-diseriminant js ¥— g =00
\/

) s X.\
When y ~ %, (p—ap2 =0, and_this’ appears to confirm

35, Approximations at points of integral curves and isoclinals,
Example ;3;?—-Consider the differentia) squation
& dy
N gy S
\,x" de = % ¥
The integral urves cross y — . 4 horizontally. Remove
the “origin to (%, A) so that

Q TR E ymhgy

The equation becomes

g’g=(k+§)2~(k+n)2=2k{e~n)+§2—n2-

Let 5 = 4¢" be the fipst approximation at the point.
ARSI~ 9 — dhagn g _ Az,



DIFFERENTIAL EQUATIONS 23

The term £2 may be neglected in comparison with ¢.
LR §2n 1 EE] Xy L) fﬂ'
EE) gn m LR ” 1 gﬂ 1
Thus to the first order of small quantities the equation
will be satisfied if

Angnl = 2h¢
i.e, n—1=1, An = 2h
giving as the required approximation at (, A)
7 = hé™ &\

Hence along y =« the integral curves have a seriés of
minima in the first quadrant and a series of maxima™in the
third. The maxima and minima become flatter 4nd flatter
as they approach the origin at which point thi§" approxima-
tion becomes invalid. To determine the shqge of the integral
curve passing through (0, 0) as before, 166"y — Aa®, then,
substituting in the original differentialequation
Anarl = g2 — 2|3
Equating powers, we have an aiiproximation if
) » — 1 = 2 provided 2%i3 of higher order than .
(]_l} n—1=2n |, T " *» o XL
(l]_'l) 2=12n . L] < -l 3 13 »» 22,
The first gives n4%'® and makes ® = 2, which is of
higher order than a2, The second and third possibilities do
not give ]ustlﬁa,ble approximation.
Thus the e(tua,tlon becomes reduced to
\~"\. An a1l = g
which with » = 3 gives A = }, and the approximation at
the omgm instead of being simply parabolie, is

3 wa
QO y=2.
In precisely the same way the approximations at all
points of the line y = — x may be found.
Example 4.

day\* dy 2 1
(@)—21:@—1—3}—0 ...y
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Nature of the intersections of the integral curves with y = 0.

It is to be noticed in the first place that y = 0 is actually
a solution of the equation, and therefore at each point of
the z axis there will be only one other approximation.

Remove the origin to (&, 0). then with referenice to thig
rew origin the differential equation becomes

di\? dy 5 &
(dz_) 2+ HE +pr=0. - AIRD)
At the new origin the slopes of the integrals, Ohtained by

inserting = 0 y = 0 are given by PAY
dy\2 dy D
@) —»g - RO
t.e. %Y 0 corresponding to the integra) ¥ =0, and & 2h
dz ".g' ! dx ’

A first approximation, therefore;(is“
¥ :ékx.
As 3 second approxima;fii::;ﬁ let
Y= 2k + Az

50 that \ % = 2} 4 ndar-1

then, on inse@;ifg. in (I11.1) we find
4B+ 48P 2 4 dhp gt _ gpg 2ndan — 452
AN — ndharm1 + 4R 4 A% 1 g 4R —
Aj{';}garda the order of these terms we note -

AQ;.“ The:a term %2 i negligible in comparison with x"1,
N sice it is the square of the latter,

b. The terms x%, an+1 gng g2e are all of higher order than
"L

¢. The term 22 ig negligible in comparison with 2.

If therefore we restrict ourselves to terms that may he
of lowest order, the equation gives

Ada*l o o9p = g
and this requires 4 — 2, n =2
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Hence the second approzimation to the curves that cross

the x-axis is
Yy = 2kx + 222,

Nature of the intersections of the integral curves with x = 0,
Setting @ = 0 in equation (11), it follows that

(=

Thus the integral curves do not intersect the axis of y¢\)y
S\
Nature of the infersections with the p-discriminant. ~\°

<

The p-diseriminant is y = 4 .
Remove the origin to a point (&, &) on *—\x and the
equation becomes :
dy Y
(@Y — 2 + 0% 4 + hJ\= . .o(L2)

At (0, 0) we have : \J
( )—2k +h2_0

Bence the two branches .touch at a slope %, and the first
approximation at (b, A)ds'y = k.
Let y = hx L A{’\‘bé the second approximation and

therefore

';\"' - g&' = h + ndanl,

Inserting this into (11.2) we get :
h® 4 2?@ 21 p2A%P 2 — Ohy — 2mdat — 2h2
N 2mdhatl R 4 2% - 24Ren + Had o+ 2dRar
.: ‘1— Alx?r = 0,

’"\
\ We note
a. The term x**! is of higher order than z*;
b. ' a? . ’s . @,
c. . xSn . ' . xzn—z
d. " " N .o v x;

since y = Ax iy the first approximation.
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Hence, retaining only terms that may be of lowest order
the equation gives

nAA%I — 9h() — Ry — ¢
and therefore

In—2=1 =< 2h(] — )

or %= 3, 4= 4 V21 ). )
The second approximation is N
Y=hr & 3V ZF. 2. )

'\

It follows that when % is such that 2(1 — 4) ig ‘positive
the integral curve can only lie on positive side of ‘the -axis
at (&, &), and when k{1 — &) is negative ¢ qﬁist similarly
be negative.

Now k(1 — h} is Ppositive so long ag 0 < b ¥ 1, otherwise it
is negative. (N

Similarly the second approxjm&tioﬁj\ﬁi} the integral curves
at a point (b, —h)on y — — 4 )"

= — ke & 3OR(T 7. o,
The isoclinals are given by "
¥ = 2 = o = 2c(z — 5)
~\
a system of pa.ra..ba\laﬁ whose axis is the axis of and whoge
vertex is at %, “y-he envelope of the isoclinals is ¥= 1 a
Locus of.iq'ﬂ;céions.
Fr%:i::{‘l 1) by differentiation
"\

dy dy g dy |, dy
AV g g 2w <o
"'\' w4
\and 2% =0, where y—1,

Locus of maxima and minima,

There is no such locug in this case, other than the integral

g = 0 itself, unless at 2 + o, in which cage ¥ may he
nite.
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Approximation at (0, 0).
Let y = Az* and insert in {1), then
A%nPr¥2 — 24 a4+ A% = 0.
Ignoring the last term, which is of higher order than the
cthers, we have :
2n -~ 2 =n and therefore n — 2,

An® = 24n and thus 4 = 1.
The approximation is therefore K N
¥ = 3‘32. ',':’. ™

The isoclinals and integral curves may now be &kétched.
Ezample 5.—To sketch the integral curves.of "éhe equation
P=a@® — ). N
Tsoclinal system. \ -
There is symmetry about the ax,ls of 2.
Jo g, ) =9 — = ) = 0.
g_c = ”v -+ 2e2 = 0.
The e-discriminant 1s~bherefore
The value of p foﬁ‘n\l from y? = 2® does not make

0 LinZ

'\
I’italcally for all values of ¢, and therefore this is
It is the isoclinal

¥ = ad

vanish i
not; an gnvelope locus for the isoclinals.

corregponding to ¢ = 0.
O
s@@cﬁ?om‘mtians along y = 0.

For y=20
z2=0 or x=+=¢

Take ¢ a positive constant then, since

y* = x(2® — %),
y iz imaginary for 0 <<« <ec.
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Transfer the origin to (¢, 0) then,
¥ = (@ + ez + 2)
C o= o Bex® L 202y
Suppose y = ax* is a valid approximation at {e, 0)
a?r® = a3 | Bex? 4 22y,

For small values of z, =1 and g2 = 92
Provides a valid approximation, Q|
y? = 2%, _ Ko\
For large values of z, n — 3, a4t=1 O
provides a valid approximation, N\
y? = 3, AN
A

&/
These facts indicate the nature of the cuwéé\m the positive
range of values of g, O
For z negative, ¥ is real in the regioll —¢ <z < 0 and
imaginary for z < — ¢, ,\
At the origin O
¥ =t ok,
A valid approximation is therefore
Y. S,
Transferring the origin' to (—e, 0),
\g{‘sz {z — c)r(z — 2¢)
\ =23 — 3ca® 4 202,

A valid ap,tli;}di%imation at {— ¢, 0} is therefore
N Y = 2c%,

and thQL‘»ng no valid approximation for large and negative.
Agaih,“writing y — 2 :

NN Fep? = af(x? — %)
<\‘§.ﬁd =0
or r = (B 4 VE £ do%)2.

Hence y —= fx cute the isoclinals once in the region z positive
and ones in the region negative, in addition to the origin,
Thus for = negative the isoclinals are loops which touch the
¥ axis at the origin,
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Phe integral curves,

There are two values of p at all points in the plane exeept.
in the region bounded by y? = 2% and the y axis.
The p-discriminant is
Yyt = 23

and the values of p are given by p% = 0 along this locns,
which is therefore a cusp locus for the integral curves. A\
For the inflection loci,

N

fr g, p) = 9* —ale? —p) = 0) (D
%ﬂ'%ﬁ — 327 4 P 4 2py = 0=\

Hence eliminating p A\
2.2 v
(202 + L) = agp (a2 7@-

Since for x positive, y is ima-gina.ry,:,hlis locus is therefore

entirely confined to negative valyes.of .
Rewriting the locus, Ny

YL + 42) + PES 2)a® 4 425 = 0

8 valid approximation ab, the origin is = y? = — 223
N
aund for large va,lups,\ oba y =4 =

The diagramen the following page shows the general
trend of the.g@lutions of the equation over the whole plane.

AN
A& Examples,

Find\w’ﬁ;’oximations to the shape of the integral curves of the
following differential equations at all points on the axes of z and
Of.,’z.:"

QM (&) =y -2
2. (%)2— 2”% =y
2. %=y (%)
4. % = z% | 4%,
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5 () =y

-3

Isoclinals and Integral Curves of pt = = (a8 — g%,
Y £ N
{ | =20 )
—-|-C=7-5 .
- (<10 3
-C-0-8

v ~C=0-6
o

": ﬁ e
ST o

W é ~c=10

e =75 Integral Curves — ——
; Tsoclinals
~4—C=2:0 Infleetion Loeug -—-w-— s

Approximate to the shape of the integral curves of the following
differcntial equations at all points of the curves indicated.

2
9, (gg) =2 —gylalongx® —y' = land y = £ .

10. (g_g)e = 2? — yalong y = ?2.
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S

ii. (%) +2y L box = Calong ¥ = &,
dy

12, (d) —:v”‘—y"‘a!ongy=m.

13, (g) —-3y +xy—0alongy—~0&nd:c’—4y

14, Verify the adJommg sketch of the system of integral curves of
the differential equation

(@) s

and prove that the p-diseriminant is & locus of cusps. - & '\“'\'

TGN e \
Integral Curvea of e = -\

.:’:3 . Integral Curves —————
ON” Locus of Inflexions g,r*’(a-.2 — )=t e
@ 2 Isoclinal Sysfem ——~——-———~——=

15. Sketch the system of integral curves of the differential
equation
dy

@222"]“92_1

16. Bketch the system of integral curves of the differential
equation
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17. Approximate to the shape of the integral curves of the
differential equation
.
(@) =y =
in the neighbourhood of the lines (i) z = 0, (i) y = 0, (iii) y* = a.
Hence roughly sketch the curves.
18. Approximate to the shape of the integral curves of

N >
AN
19. Show that the envelope of the isoclina) system of tI}e\e?lhat-ion

B~ yr=1
iz & locus of cusps of the integral curves, N

20. Solve graphically fi) x = p, o\
(i} @+ y=p2, \%
(i) = — yp = p2.

(iv)@? + g% = pﬂ,:o}\.a

(v} 4pz — 4p“"§y..

] X 3

21. Verify that ¥ = % is an onvelo’gd Tocus of the integral curves

and of the isoclinals of the d.iﬁ"eys,ﬁ’jgial equation
R\ Y _y .
(p ?)":;_‘ 2(9' 5) =0

and sketch the system g isc;clinals and integral curves,
22, Prove‘ that =9 a node locus of the isoclingls and g tac-
locus of the integra} curves of the differentia] equation,

® @+ up + 2y 42 49 g
Verify that p.aX is an envelope Ioeus of

P 7 the izoclinals and a cus
locus of thedintegral curves, Sketeh tho isoclinals and integrgl)
curves. ’,\'“.‘



CHAPTER 11

GRAPHICAL METHODS FOR DETAILED
SOLUTION

w
e

Graphical integration of % = flx, y).

,;
T
="

. First approximalion to the solution of % = flz, ¥) subject %0
2N\S ©

&= Zo» ¥ = Yo & .
. Bequence methogl of refining the first epproximate solation.
Convergence of the sequence method of successive Approxima-
tions. ¢
Extension of the range of integration. ”‘\
Bystems of simultancous eguations. ’
Graphical intogration of a system of two {imulta.neous equa-
tions of the first order. AN
Proof of convergence of the sequencel method of successive
approximstions applied to a syStem of two first order
equations, ) W
Extension of the methods of integration to equations of higher
order. N
Integration of second orderéfjuations.
. The first approximation. $Ewo methods.
. Improving the aceuragy of*the first approximation.
. Linear differential e ua.tionz of the second order,
/8
Pty =R
. Linear diﬁerer‘lt%l equations of the second order of the type
2
> T 4oy =F.

\¥/
5.15. Intogration of second order diiferential equations whon the
bo”\“ conditions are at both ends of the range.

pice]

=g

B
I T

=

e en €
ek e ek
[0 G e

LA
Ny
.

5.16. q;i\'vei*gence of the sequence method applied to a{z% == fla, ¥)
R \ subject bo & = @, y = b. \
N?;f:}: "Convergence of the sequence method applied to % = flz, 1)
\\" subjecttow =@, y = d; x = b, y = B.

3.6. Graphical integration of % = flz, ¥).

The foregoing methods should certainly make it possible
in almost every case to acquire not only a broad survey of
35
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the whole class of ordinary solutions of the differential
6quation, special singular solutions that may be intimately
interwoven with this system (e.g. envelope loci, ete.}, but
should also provide a frst rough approximation to the
Particular solution that Passes through any given point in
the plane. It remains, therefore, to provide a graphical
method that will refine such an approximate solution to afy®
Prescribed degree of accuracy, consistent with the mechghisal
materials at our disposal for carrying through this girceess,
In the first instance, therefore, we turn to a \graphical
method. An alternative method of obtaining{a \first ap-
proximation to the solution through a given{paint is given
below, before proceeding to methods of Yefining the first
approximation. \

3.61, First approximation to theggi;luﬁon of j—‘z: fle »)

subject to x — o, ¥ =gy
By substitution in the gqfﬁxﬁion, determine the gradient
E{g at (x, v,). From t}}e initial point 4, draw 4, 4, gradient

%' to meet the ordifiagte at @, + A, and read off the new
values of z andyf\‘ Substitute the new values of x and y

covert?d. Tt should be ‘clear that where the gradient is
changlgg /miore rapidly smallep intervals in z should be

taken\~ J
R

:3}52.' Sequence method of refining the first approximate

solution,

Here a solution ig Tequired tp g, higher degree of aceuracy
than. the' more general “ ¢lage solution ” or the first ap-
ProXimation found by the method of the last Paragraph,

Thg Integral ecuryeg obtained by the methods already
described are only first approximations to the solutions. A
second approximation ey be obtained as follows :
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If the differential equation to be solved iz written in the
form '

ﬁ—g = f(z, ¥)

and corresponding values of ¢ and y from the first approxi-
mation curve A (Fig. 1) are inserted in the function, a table

for j—g may be constructed and plotted as in Fig. 2, curve A’ »
Om integrating this curve, by means of a planimeter or.
ctherwise, a corrected set of values of (2, ¥) is derived.and
plotted as the second approximation (Fig. 1, eurvc‘ﬁ}.w In

effect the seguence

DY t1 _ "‘\\
de S, ) v
T ] <A\
or os1 = Yo+ | 1@ g8
has been used. ANV
1f the curve B be treated in exabtly the same manner as

- ‘:. " d -
curve A, a second approximtation to d—g (viz. curve B,

Pig. 2) will be found, and hence again by integration a third
approximation (Fig. 1{6utve () is derived.
)

Y
B
5]
i A’
S)
m~\J
\ 3
0 — = 4 o —— X

Fia. 1. Fia. 2.

Example.—Find by the foregoing methods the integral curve of

dy
=™
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which passes through the point x — @, ¥ = 1, proceeding as far as a
third approximation. By integrating the equation examine the
accuracy of the resulf,

3.7. The convergence of successive approximations.

Let :% == f(z, y) be the differential equation. It is given
thaty:Ywhenx_:X. . A
Let y, represent the nth approximation \ -
Yos1— Y=f f@ ). de N ()
X P O
where y is defined by the equation “\
V=Y~ [fena. . .
X N\,
From these equations P\ 4

Yor1—y =y fxﬁ(x ¥a) — flz, ¥)]
X2 L ¥~ 9) . [z, u), . de

<\
where f(z, ), iisﬁ‘ré value of —2‘5 at & number intermediate’
between y, atdyy.

riting, )= 3, — ¥ so that ¢, will ultimately measure
the errgz of the nth approximation,
S 4
.Qt': &
N €n+1=L€n_fy{x, Y);.dx

»
&
&«

herefore [€a11] < Eje,,i Af =, ¥l . dz

.

' alue of le,] which ocours in the
range during the nth approximation, and let M, be the

greatess value of | f/@, u),] which occurs in the range during
the nth approximation,

Then ¢, and M, will not be functions of z, and therefore
may be removed from under the integral sign,
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x
Thus [ens1] < e .M, [ dx
s X .
or |&ns1] < & . Balx — X).

At some point in the range |e, | will assume its greatest
value ¢, 41, the inequality still being true
&yl < &« Mz — X}
Erf Lol Euw-l’ . _L'1|’In-1(x — X)

N
. 3 * " . L} . . . £ \“\
A\
52' <€1'.M1(5E—X) % N
£
Sixce the numbers are all 4 ve quantities, \\
et € . € <& L. e (@ — Xy MM 1 . . My
1., enyt <€ My My .. .,\xglih[x-—X)”
ie. €t <</ (MBY 2O

where M is the greatest of the jriuﬁibers M,, M, etc., and
E = x — X the range of integration. Tf therefore MR < 1,

that is, if in the range of iﬁﬁégmtion R < %, the maximum
error of the nth &ppgegmation may be made less than any
assignable quantitg('\by choosing » large enough, no matter
how large ¢, miay be, that is, no matter how unsuitable
the fivst approximation may be. In effect M is the maxi-

mum val@éb% ’% that occurs in the range, and although

thiS,Q'Qﬂ“lot be specified initially with any great accuracy,
a rough approximation can usually be made. In practice
mgi}ib range of valid approximation is much greater than that
S_dletermined above, which is, indeed, only a gafe Jower limit.
TIn the actual computation the effective range is indicated
at quite an carly stage by the rapidity of convergence at
successive values of .
Recollecting that y has been defined by means of {2),
we have still to prove that the final values of y actually
satisfy the differential equation. Differentiating (1)
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Pt - fla, 4,
gg”“"]»—f(x,. Yo 11} =
<[?/n — Yn 41
<[th 11—
<'e,,+1— €n

f{x’ yn) _f{x! yﬂ+1)’

Q7.
_(y,l—-y)J . {%,ﬁ,nﬂs
ayn,n+1 )

As the right-hand side of this inequality can «:E;e ‘ade to
approach indefinitely close to zero, it follews that the

differential equation is ultimately

satisfied "\

o\
3.8. Extension of range of integration. \ >

Since the range is approximatel\Measured by 1 / @f)

it is possible to form some idég)
a given case an extended .tange

differential equation % =fa, ¥)

ay_ max.s
nitially as to whether in
may be expected, The

has the system of iso-

clinals ¢ = flz, ) q,pi\the slope at any point (z, %} on the

isoclinal is given h? — ;% f% It

follows that if % is large

both the slopg Of the isoclinals and the range of valid inte-
gration arp small, and i % is small, the range and slope
S 4

are Ia@e Thus the favourable cage oceurs when the slopes
of thedsoclinals are steep in the neighbourhood of integration.
~When an extendeq range of integration is required, it is
ngmetimes desirable to make uge of the fact in the following

manner. The isoclinals are first

roughly sketched, and if

their inclination to the axes of # is gmall, a new set of (=, ¥)
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old values of x and y will now be expressed as linear functions
of the new values, and a modified differential equation
will te obtained,

This if

=)

is the original equation, the transformation,

x=2¢cosw + psinw

y= — £sinw } 5 cos w N\
Ny
which is equivalent to N
E=xcosw — yainw \\

y=xsinw | yecosw

w, 1f)ﬁi:r\‘g, the angle between the positive direction of the
x-axia and the positive direction of the\f axis, transforms
the equation above into :

tan (x — w) = - *.—'f(v’ﬂ )

£ s

where tanﬁc ) d—§ = &, 7).

The new equation g&'@’f(x, ¥) may now be used to obtain

the integral of thé briginal equation. In changing the axes
by the above %rénsformation it is best to arrange that the
average slope,of the isoclinals to be as steep as possible
over thewhole range, rather than that they shall be steepest
at one éﬁ% of the range.

The ‘process should then be rapidly convergent for the
HeV. equatlon The extreme case occurs when flz, #) is
avfunction of y only so that the isoclinals are parallel
to the axis of x. Their slopes being small, the range of
integration will be small, and it hecomes necessary to
turn the axes so that the new axis of x is perpendicular
to the isoclinals, that is to say, the new axis of z should
be in the direction of the old axis of y. These requirements
will be met if the réle of the axes of « and ¥ be interchanged,
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N d. \
and instead of using the equation in the form d—g = fla, y),
it iz taken as g-—; = 1{f(z, ¥).
This suggests in fact that
a. If the isoclinals of jg = f(#, y) be of steep slope in phe

neighbourhood of the range of integration considpred,
the equation should be used in its existing £orts’ and

the sequence for approximations is gg % *\1; f(x, Yo )-

b. If the isoclinals be of small slope the}éluation should
be used in the form gg = 1/{(&;}) and the sequence

T A
for approximations is Eﬁi\: 1/f(z,, y).

4. Systems of simultaneous e&iifaﬁons.

The graphical method{developed in the foregoing section
for the solution of af“equation involving one dependent
variable only may (be extended immediately to the case of
& system of any{gumber of equations involving the same
number of dgp\endent variables.

If T ¥, Z\J- are the dependent variables each implicitly
funetions. oV/an independent variahle 1, and if the differential

zoefﬁci?gcs involved appear to the first order only, viz.
z @2 dz

d\gi g - - - then we may suppose the system solved

\,j;ﬂgebra.icaﬂy for these differentia] coefficients g0 that we
~\J have finally

dx

a_izx(xs Yoz, .. .1
d

jsg = Y{x: ?/, By v t)-
dz

TR AR A A )
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"Fhig is the form in which we can assume the equations to
be given.

The method, closely analogous to that of a single equa-
tion, will be illustrated for the case of two dependent
variables ¥ and =z.

4.1, Graphical integration of a system of two simultaneous
equations of the first order.

<

A

Les the equations be &
{ d"" - :.‘\.\ ot
7= « \J
(1) = =[ty 2 | (\}‘
o Y _ .
( i dt g( Y Z) Where ¥ =Yg &= Zo fOI' Kx t(l

Operate simultaneously with two diagrans, M5 below, the
y-axis being a continuation of the z-axis? \

Fra, L.
4 "
N
MR -
st W
\\B, 0: ",f
h"::"{‘“"-}?:_ _______ -
o\
¢ &N
LA
4 A b S
e,
A/ —f
9.\l
"\«.
o7

\v | /{C}
A,

_*t

The initial values (£, %o, %) determine two points Ay, 4,
(4, vertically about Aﬁ) in the two diagrams. On inserting
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these values into equations (1) and (2) the slopes at 4, and
4; in Figs. 1y and 1z are found, so that small tangents
AyB, and A,B, may be drawn, their lengths being so
adjusted that B, is vertically above B,. The new co-
ordinates of B, and B, can then be inserted into equations
(1) and (2) and the slopes at B, and B, determined. N\ew

Fia. 2.

p §
A v
£
7
X
NS z

elements B,(, and B,Cgein now be drawn, ('} being again
vertically above C,~\By continuing this process, two
broken lines 4,B,C{> . . N, and 4,B,C; . . . N,are deter-
mined, If smgo‘j;}} ourves are drawn through the points
Ay By, 0 K5 4y, B, O, . .. they may be regarded as

t approximations to the solution of the simultaneous
equations

To derive a second approximation corresponding sets of
valwesof (¢, y, z) are read off the curves obtained as a first

g roximation (Figs. ly and 1z), inserted in equations {1)

3'end (2), and the corresponding series of values of %Y and

dt

dz

g are caloulated and plotted against ¢ in one diagram
{Fig. 2), The sequences

dz,
dt 1 = f(t? ym zn)

DY
F = 9t Y 2,)
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are now employed to determine closer approximations to

the sclutions.
A dizect i . dy dz
direct integration of the curves for 7t and 7 by means
of a planimeter or otherwise determines new values of ¥
and z for corresponding values of #, and these constitute
the second appreximation. .

Repeating the above process by inserting corresponding \
valaes of (¢, ¥, 2) from the second approximation in eqiiac
tions (1) and (2), and deriving a corrected form of Figs 2,
enables a third approximation to be obtained. \

This process may be repeated until two suepéss?ve ap-
proximations agree to the degree of acouracy.desired.

The convergence of this graphical process is established
below. In certain cases it may be betterito ehoose y or 2
as the independent variable, instead, 6f4, and this must be
decided by the values of the partial derivatives required int
the proot of convergence. o\

Thus, if f or g becomes togilarge, recourse may be had to
the following equivalent syStems:

mgf% = f(=: 4, %) ]

ST L o)
< <" de 1
o &y~ fw9.9) |
\\ dz _g(@ 9,2)
O dy = flz.9,2) ]
AN de _ 1
@ de  gl@, 9.2 |
W dy _f®,9.2)
dz gz, ¥.2) ]

Finally, a new system of co-ordinates (%1, Y1, 71) Mmay be
introduced ; this, however, will rarely be necessary for most
cases can be satisfactorily integrated as above.

Example.—To illustrate the convergence of this graphical
Process the simultaneous equations
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dz

T-;—xy-—o
dy _, _
CB&ZS"—Z 0

subject to x =10, y=1, 2= 0 were integrated, and the
results quoted on p. 46 were found in less than one hour by
agsuming as a first approximation '

4, = 1 — 0-5z. Q

The more aceurate solufion of the equation. is tabulated iy
the last column, and the percemtage error in y, is e\{ery- '
where Jess than 05 per cent. “~\

Use the sequences

x ."’.‘\\.
Zn-kl‘]‘nyndsz ’

“Zn gy 1 140
y-n+1—-J;)E x—i“\

7
|

W

The solution is ¥ = ST\ >

42, Convergence of successive "approximation applied to
simultaneous equations.

The proof of the conﬁr‘g}gence of the method of successive
approximation has ‘already been given for the differential
equation O
A\

O Yegew

:n\.:' ) . .
The iﬁlltﬁving proof follows similar lines with but little
deviation from the former proof.
Consider the equations

V %:ﬂx,y,z)_ . (i).
and g—fvzg(x,y,z). e e

Let the initial condition be

=Ty ¥ =Yoo = %0 - - (i)
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Then _ i =¥ + L f(&'}, Yo, ZD) .da.

This is the first approximation to the value of y.
If y is the true value,

y=yo+Lf(x,y, z) . dz.
Therefore

2 '.\\\'
y=u= [ e 09— flo go ke i)
Similarly ' N\

 {

== e y.2) — gz, g6 zu}ml‘: )

Applying the theorem of mean value\to the right-hand
sides of equations (iv) and (v)

&

fle.309) = fe v 20 = (0 ~ oA e — (L)
and

962 9, 2) — g(z, Yo, 2) %}iz;:: v(ge) + ¢~ =)

The values of th&l;sa.rtlal derivatives being calculated at

some mtermedla\e\‘poaltmn in the range (z,, ¥, 2z, to
(z, 3, 2).

Therefore
y— g\\f[(y W(E) + (L) | .
f*zﬁ [lo=90) + ¢~ Ja. . o

\ * Adding (vi) and (vii)

vovte—zn = [[y- yo){( D +(&)
te—w () + (@) o . i

H M denotes the maxzimum value of whichever is the
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g () ) (2] e
(%o Yo %a) 1O (%, Y, 2) then

ymy o m < [ MY — )+ (¢ — e

Iet 2, and p, denote the maximum values of |y — ¥l
and jz - #,| respectively in the range (%o, Yo %o} 1O (¥, U z), ,
then with similar notations A, and g, for the corresponding
maximom values of |y — ¢, |2 — z,| in the range (%0, Yar £0)\
to {2, ¥, 2). A

M b < MO+ poll [ del O

< M(Ag + po) - |2 — xu]-«"‘}\\
Similarly \
A+ pp = My + pa) - Iw\‘\\%l
Mo n < M1 D) - |2 — 2l
the last equation holding for the] wth approximation.

Hence, multiplying the déft-hand sides and right-hand
sides of these inequalities‘and dividing by the cominon
factors KA

(Ay -+ pa) - \\’(A:. +pa) < Mz - 2]} - (Ao + pho)-
It is now cleat that if M{z— x| <1 the right-hand gide
can be made@maller than any positive quantity «, however
small ¢ maybe. Therefore the nth approximations cONverge
to the\t"fdé values if
O

N |z — | <%,
Qe o —nl <1[{[Z]+ 3]}
or <1/{\g{‘+ g% }

where the partial derivatives are the greatest in the range.
Thus by choosing the inorement in @ small enough, the
process may be made convergent, It should be clear that
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if any of these partial derivatives should become infinite
in the range, the process cannot be convergent.

By a transformation of axes it may be possible to make the
partial derivatives take smaller values, and this will greatly
speed up the convergence of the process. The student
should therefore examine the values of these partial deriva-
tives in the range before proceeding to the actual numerigal
calculation. In certain cases it might be much bepj\;eli to
take y or 2 as the independent variable.

5. Extension to equations of higher order. ~‘ h
If the equation be of the second order ,_"‘}\\

d*y d y
f (d—xz'a gg’ ¥ x) )
L&
subject to boundary eonditions of ‘the type
2=y y =Py @ p
02 ’v‘}‘ 0 dx L]

4 .’: ’ 9
then by direct solution™for j—xg it may be thrown into the
form \

@ d
Ny (oY
\ dxﬁ g(dx! Y &‘.‘)

the bounddzy conditions remaining unaltered,

Intrddnce 2 new variable P = dy go that P _ Py then

::\, dx dx dx?',
t-l;g%nginal equation and its boundary conditions become
NP d
~O di’ =9, y, x)
Y y
dy

dz =P
where » = Po ¥ =3y, when zx — Zq.

This is now a simple system of simultaneous differential

equations and can be solveq by the method of the preeceding
Paragraphs.



FOR DETAILED SOLUTION 51

51. Yxtegration of second order equations.
Methods applicable to linear equations and to non-linear
equations of the type

& d

subject to * = %o, ¥ = Yo Y = Yy

The methods of integration described in this section are
all apphcable to linear equations, but special methods to.
be deseribed later are available for this type of equétior.
The problem is solved by obtaining a first approximation
to the solution and then refining this solution ,byf gequence
methoda. N

First approximation. N
Method I.—The equation above pl‘ég}’be written as the
two simultaneous equations Y

%~ 1@y )|

and % =z J
\

subject to = = =gy 2= 20

The integration’ of these equations bas already been
described undér simultaneous equations.

Method LIx The curvature method. Consider the equa-

tion written in the form

O
R % — f(x, y, tan i)

m‘\‘ 7 d
wh vy __
\/Where ar tan .
d* ds
Now E§:m2¢'%=%c2¢'%'d—i
11
T costyp
since the radius of curvature is given by p = ﬁ—':b.
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The equation may therefore be written in the form

%z cos® of . fw, y, tan ).

‘This equation specifies the radius of curvature and its
sign at any point where , y, and ¢ are known. The method
of procedure is to draw PO through the initial point per-
pendicular to PQ which is the direction of y," at P. If OR>
is made equal to pg, a small arc with centre O and raflins

{i{e\thod of Curvafure

QP will be an ‘a}proximation to the solution at P. If P,
is the end, af’fhis small arc, then %, ¥, and  may be read
off at t}} new point, and the new radius of curvature P00,
may be.set off along P,0. The Process may now be con-
tinyeg “over the whole of the desired range and a first
approximation to the solution is obtained.
O Tt should be noted that the nature of the physical problem
) Which is being investigated may suggest the first approxima-
tion, or a guess at the solution may be made. The sequence
:mei.shoq now to be described very rapidly yields a solution
which is aceurate to within % per cent. over a fairly wide

range under average conditions with even g crude first
approximadtion,
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5.12. Improving the accuracy of the first approximation.

‘é—z are now available over the

range of integration as a first approximation. By substitu-
2

tion in the differential equation the values of c%:yz are obtained

The values of #, y and

and plotted with = as absciseee. This curve is integrated

. 3y . dyy . .
to give Fie and, since <c_ix)o is known, this eurve may be\
4 1 u\
drawn. The curve for %% upon integration and insexltio;x’

of the value of y 8t T = %, yields the second approxima-
tion to the solution. In effect the sequence \\

Pyair_ g(s A4)

Cﬂx‘a_ sy Yoo dx :‘\\:
& T d . “¢ { ,
. ?/n+1:f de f(x, Yny E%)fi?‘ﬂ?\yu+yo X
hes been used, and by repeating: the process a third ap-
proximation is found. Wheit\two successive gpproxima-

tions are the same withinthe specified degree of acouracy,
the process may be stogﬁed-

5.13. Linear diﬂeren{i'él: equations of the second order
Ny, plY -
’\“,na"gg*i‘ PEE:_{_ Qy = B,

where P,”@\hd R are functions of % only. .

It is’shown on p. 183, where a much fuller discussion of
this fype of equation is given, that if any two solutions u
and% are found to the above equation with the right-hand

“%efo, then Au - Bv, where 4 and B are constants, is the
general solution, snd 4 and B may therefore be found to
satisfy any given boundary conditions. -

Tt follows, therefore, that if any particular solution of the
original equation above is known, then the general solution
may be written :

y=A‘W+B’”+?hJ
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where y, is any solution of the equation
@y | -pdy —
a2 + P ax +Qy=FR
subject to any boundary conditions which it is convenient

to impose. Using the two arbitrary constants A and B,

this general solution may be made to satisfy any boundary
conditions, N\

5.14. Linear equation of the second order of the typs ‘:\

d* \
Q=R .

S ":

where R and @ are functions of z. LV :
It is shown on p. 184 that if ypu87a solution of the
equation RN
&Py ¢
Tt Qy= O
then ¥ =dnlos+ By
N 1

is the general solutiqt;;"éfnd hence if ¥, is any ‘particular
solution of the origina} equation
SN d
.\i,'} E;_yg + Qy = R,
then the gémeral solution ig

} dx
y= Aylfy—fﬁ By + g,

A\
(N
dthe constants may be found to satisfy any arbitrary

Jeundary conditions.

5.15. Graphical integration of the equations

@ T8 = fio, 9)
d
O gh=oe v )

when th_e boundary conditions relate to both ends of the
range, viz. x — Lo ¥ = p; = X, ¥ =y,
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By means of the transformations
x 2%, Y=Y "
Ty — Ty Y1~ %
it will readily be seen that the boundary conditions in the
new differential equation become & = 0,y=0and x=1,
y= L

dy  (y1— %) 8Y
Also ﬁ = (xl'-—'—'__‘ .’L'o) . H;X

dz!/___(?h_'?@ a*¥ XS
and dxt = (o, — %) AKX & 2

N\

Let us therefore return to the old variables with the more
convenient boundary conditions. f4
It is proposed to use the sequences

ioon = (@[ fl@ v)is + 4z B
o (“

7 ‘\'
)

and g1 == sz:c rg(x, UYns %} d':e:x 4 Ax + B,

0 L0

respectively. The geomet::igai ‘process is quite gtraight-
forward, and consists of first obtaining an approximate
solution of the equation between the two end-points of the
range. This may be\done for equation (a) by examining

2, s .. .
the value of % o\%} the range, and 80 determining the sign

of the curvatire. An gpproximation is NOW drawn to satisfy
the houndary conditions, and having the sign of curvature
specified Yids above. In many ©ases the nature of the
physioal problems which is being investigated suggests the
first* approximation. Another method of procedure i8 to

~\take as the first approximation the integral of the constant
coefficient equation

2,
P9 =4+ Bs+ 0y

subject to the above boundary conditions where A = fizo, Yobs

B = EE) , 0= (?i>  However crude this firsgt approxima-
o/ ay 0
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tion may be, the sequence leads to a solution which is
everywhere correct to within } per cent. in a very few
steps.

Having drawn the first approximation, this curve is used

to give values of x and Y (and % for equation (Z»}j} which

. 2 . . . o

yield 3—5’; when they are substituted in the differshiial
dzy ’\..\

equation. The T2 CUIve is now drawn, and when it is

integrated by planimeter (or otherwise), a cgn;‘{re for ;’?" may
N\ -

2 }
be plotted whose gradient j—x?’; is the ordinate of the previous
N
A Y Vi)
O, 3y (O SH
By a8 i
N - —— A —_—
y R X x }J_ a
i‘\‘ b New Azxis of 2 weil’
. \\\ - Area ABCD fo
" N be Inteqrated

¢

0111“{3{.\‘71% follows that the ocurve for % may have an

)
arbitrary constant added to all its ordinates without alter-

) \ng the gradient of the curve at any point. If this curve is
() “integrated over the whole range, and « units is the result,

(I — o} is clearly the amount by which all its ordinates.
should be increased in order that the boundary conditions
may be satisfied. The curve is therefore raised by 1 —a
by draWJ'ng 8 new axis of z, (1 — o) units below the old one,
and by integrating this new curve % may be determined
to satisfy the end conditions. The process may now be

repeated until two approximations agree to within the
prescribed degree of ageuracy,




,..\

N

FOR DETAILED SOLUTION

5.16. Convergence of sequence for second order equations.

iy &
Consider d—;z = fie, ¥)
subject to the conditions

x=a ¥ =b fﬂg c.

Take the sequence determined by

Yois = j “de [ flw, vy -+ ofw — @) +b.

This satisfies the conditions that when P\ )
x—@a, Yospr =0 and %M ==,~a}“‘

Associate with it a function y defined by\
y=[ df flo, )dx+c{m~a)+b

Then ™
| dxf’ Ef(w, v} — f@, )] de
aks?f(y,, — (g,

where \a ) is & value of f(x, y) at a value of ¥ mtermedia.te

between y‘ar\a y, both of which are functions of .
NOW "\

\\\ oen— vl < [ (19— 1| (),

V'7"1"113111g €, = Y, — y and M, as the largest value of (

dz.

1)

oy'a

that ocours anywhere in the range during the nth stage of

the sequence

lenss] < [ [ |eal - Mle

< e'M, [ * dw j dx
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where ¢," is the largest value of |e,[ a positive function of
x, that oceurs in the range.

Thus [en+1] < e’ Mulz — a)?,

but a particular value of |«, .| is its largest value, viz., ¢, .,/

and therefore
€n 4+ 1‘I < "]-Z'RzenrMm

N
where B = range of integration.
Simﬂar]y €\.; < %RQE‘H _ 1’ . Mn -1 "\,,\‘
e < 3R%,'M,. A\
R2» AN 3
Thus Gn-{-l’ = (?) 51!M1M2 ..'"\b"Mn.
If M is the greatest of M, M, . .\ M 2, then
, (MB?;Q“ ,
g1 < fgﬁ 7. €y

and the sequence convergqsiﬁ)réﬁded the range of integra-
tion R is such that N

MzR.E,'g% 'or k< ’\/(1%)

Effectively M i«is{:the greatest value of ‘SJ;

that ocecurs in

the range,, h&ﬁ this investigation demonstrates the conver-
gence ofythe process over a finite range. In practice the
actual wihge of convergence will become evident quite carly
in.,t%"computation, so that very little extra labour is in-

\j{@lﬁ'ed when M cannot initially be calculated.

_~3% 5.17. Modified treatment when the boundary conditions do not

all relate to one point.

Consider
d2
iﬂx_?é =fle,y) . . . . . {1
and let a solution satisfy the terminal conditions
T=a, y=4; x=b y=8B. . . (L1)

where we may suppose without restriction b =axz 0.
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Write the equation in the form
v =[] flo, g)te + a4
To make this satisfy the terminal conditions we write it
¥ — A= [:dxf:f(a:, yide 4 Mz —a) . . (2}
where A is determined from

B 4= j o f S, e 4 AB —a) . ;..(2’.‘1‘)\’

Cionsider the sequence defined by . N
Yy — A = dx j f,u) de - Maen). . (3)
where RN

] rd ’:,\
B4 :j dxj fz, w)dz +..Mb —a). . (3]

Ghen, subtracting (3) and (3 1) from (2} and (2.1), re-

spectively, A
Gois =y = [ de [ [ffo, yit> S )it

IR ol Rl Rl IR € B )
and p '\’\,}

0= ]: dx [[{(ﬁ{?’*) — flz, y)de + (A — b —a)  (3.3)
Hence from\f} ‘\2')
2 R < | [ az [ o, ) — fio, yidal
F= A —a] . . (3.4)
\"B:ut, since x is a point intermediate between ¢ and b,
Also from (3.3)
=2 6 — ) = | [ d [ [f 4 — fie, )] - do]

ifdxf ¥ — ) - (f> dx,

|2 — al < [b—al.
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of

where <8§> is the value of the partial derivative of f{z, )

n

with respect to y at a position 2, and at a value of y inter-
mediate between y, and y. This derivative is not merely
a funetion of z, but of » also. Let the largest vahie it
attains over the range a <L « < b be M,, a function of a,
but no longer of z. Also let |y, — y| = |ea], also a fungtion
both of z and n. Let the greatest value this attains in the

range a =L x =< b be ¢/, then <\
b % X 's.\
=N (b —a) < | dx[ e’ M, da
ie. <&M b— a2 LY. . (3.3

Hence from (3.4)

N
lens1] < Mue)'(z — a)?/2 + e,;M,,@;,l a)/2.|x —a| (3.6)
Hence, since ¢, 1 is the greatéstvalue attained by |én 41|
at some position x, the ineguality will still be true when
|en +1] is replaced by e, 1’ 0itthe left and |z — a| is replaced

by the larger number, W%~ « on the right. Thus (3.6}
becomes

E"'f'“"‘\; < }A—HEN’{b — a)z.

Similarly \\
€, <Mn_1e,;_1'(b—a)2
O & <M —ap
an%a{geordjngly
"f\ gl <M M, ... M/ '(b— a)n
Ny < MR | ¢,

greatest among the positive numbers
My, My, .. . M, and R=p — g — range of integration.
It follows that the sequence {3) will be convergent, no
matter how inaceurate the first approximation may be pro-
vided the range of integration R is restricted, so that

MR <1, je. B« _1_

Vi
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of

In effect M is the maximum value of 3y that occurs in
the range ¢ <« < b, and since, in general, thiz is finite,
the sequence will lead to a definite limit over a finite range,
it remains to show that the limiting form of v, actually
satisfles the differential equation. From (3) by differentiat-
ing twice

_f_f“ynn — f{x, yn)

da? .’\\\
and therefore o\
td? 1 - P 3
G — f(@, Gu) = Az, y2) ~ (@, 1) WO
S g
=|yﬂ-{=1}\_ yﬂ! . ’_f‘ '
. of AN
where || is the value of 2 at any position = and for a
Y |m oy W ’

particular value of ¥ intermediate })ejﬂWeen o, and y, 4.
Since (Q_f) is finite and RN
m \

% o
]yﬂ-l-l - ?fnl = I€J§‘;¢i."‘ en[ << €n+1’ + E"’,
the expression L
g iﬂ%“_ 1
“Napg I )

may be made o wpproach as near to zero as may be desired
by sufﬁcientlj(}mcreashlg n

It shquld\ be remarked that the permissible range of
integrafion is in this case apparently smaller than that
deriyed for the case where the terminal conditions all relate
to~0ne end. Although in both cases the practical range
_Within which this process leads to a definite limiting solution
\s much greater than that derived from the investigation,
it is, in fact, found that the range of accurate approxima-
tion is more contracted here than in the former case. A
serious practical difficulty arises, therefore, when the two
values of x at which y is specified are further apart than is
permissible by this process. This will be dealt with later,
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Example.—By a graphical method find to (huee o 0 decimals the
golution of the equation

3z + 2y — BEY 4

ot

satisfying the conditiona 2z = 0, y == 0-5, « 1.0, .1

3§
N
A\>
4\(/
P
Q¥
N\
<’\\



CHAPTER III

NUMERICAL SOLUTION OVER A LIMITED
RANGE

Solution in seriss. N
Picard’s method applied to first order equations. Ke
- Convergence of the process in a special case. AN
. Application to simultaneous equations and to equationgbf the
second and higher orders. A\
+ Picard’s method when an epproximate solution js'evailable in
tabular form. ¢*
Bolution by expansion as a Taylor’s series, AByuations of any
order. 4
. Application to simaltaneous equations, \
The method of Frobenius, N
The methods of Euler, Runge, and %ﬂ}ta.
Method of Euler, )
Modified method of Euler. O\
Method of Runge. g ™
- Piaggio’s modification of Rufige’s method.
Kutte’s modification of Ruehge’'s method.
- Kutta’s third-order appfo®imationas.
. Kutta’s fourth-order approximations.
Comparison of aceufacy of methods.
Collected formulges
Application to sigm\llta.neous equations,
Method of co%@ct’i_ng initial values.
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Introductiom, & ™

TuE probhlem of the numerical integration of a differential
equatiofi is, in general, to find a function (say, ¥) to satisfy
the gguation for a given range of values of a variable z.
Thé&solution may take one of two forms, either

Y (¢} that of an expression for y in terms of functions of z,
from which values of y are obtained by direct
substitution, or

(6) that of a series of values of y corresponding to tabu-

lated values of =.
63
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The methods of Picard, Taylor, and Frobenius yield
power series in the independent variable, and helong to
class (a), whereas the methods of Euler, of Runge, and
Kutta, among many others, belong to class (5). Since those
included under (¢} embrace also cases where the expansion
iz expressed in terms of functions other than polynromials,
it might be supposed that the methods of section (a) are
preferable in all cases to those of section (), for, once i
series has been found, it appears that the process can, be
completed by direct substitution of the value of gl¢iwte-
sponding to the value of y required. This is net always
the case, however, for this method suffers in prﬁﬁtice from
several serious disadvantages, which may bé briefly noted
here. )

/

(i} It may not be possible to obtgin & convenient con-
vergent series which represents the funetion y over
the desired range of values’of z. A possible pro-
cedure in this case is to #ivide the range into parts
and find separate séries to represent the function
over these parts, (N

(ii) The determining of the coefficients of higher powers
of » may pe\'\come rapidly more complicated as the
number of terms increases.

(iii) Ca]cula’gil}g\values of y by substitution in a power
serie§ _for o may entail considerable labour, which
ha¥4o be repeated for each value,

{iv) NIIQI\those cases where the numerical values of the

\O s?lution is required, and the labour in the calcula-

V' tion via the series becomes excessive, it is better

x\f Ny to apply a numerieal process direct to the differ-
) ential equation,

In view of the above considerations, and particularly for
the cases whero the range of integration is wide, other
methods of integration have been devised. These Vary con-
siderably in suitability. The methods of Euler, Runge, and
Kutta are all methods of determining the increment of y
corresponding to a given increment « in x, and are expressed
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bz formulz from which by direct substitution y is obtained.
These formule are very suitable for caleulating isolated
function values. In general, even with the most accurate
of these methods., viz., Kutta’s method, the interval must
nevertheless be kept small, and progress becomes slow, both
because of the smallness of the interval and hecause the
formule used involve cumbersome calculations. Such
methods are therefore not satisfactory for tabulating
function values at intervals over a wide range of integras
tion. In such a case thiz has been achieved by hawing
special processes for continuing the integration oncé it has
been begun by one of the foregoing methods. To.this pro-
cess we apply the term ° Integration Forwardh Formulz
used for integration forward chiefly involve {inite differences.
1t is hoped that the descriptions of the miephiods will suffice
to enable them to be followed and applied even where a
previous knowledge of finite diffefences is very slight.
Alternative methods will frequently’be described, but the
precise choice of method in any patticular case is not always
easy. To assist towards thig'end there iy included a short
comparison of the methodgas regards their suitability under
specified conditions. .

The importance @f>adequate checking of calculations
must be borne eomtinually in mind throughout this work,
and systematis, &‘xecks on the calculation have been incor-
porated as appart of the process of integration. A single
undetected error may lead to hours of fruitless labour that
might fbg}&oided by a few extra minutes devoted to apply-
ing the'eheck., HKxzperience in numerical calculations enables
errers to be detected with greater facility, but a mechanic-
ally applied check is & safeguard against such an error

"\ &scaping detection.

6. Sclution in series.

The methods of Picard and of Taylor to be described in
this section are in general the most direct and convenient
methods for starting the solution of an equation over a wide
range. In addition, where the range is limited, they may
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yield solutions which are

valid over the whole of the deyired

range. It has already been pointed out that the range may
be divided into parts and a new series developed to apply
to each part separately. In such g case the derivation
would require to be very simple and the series rapidly con-

vergent for this method

to be preferable to those described

later. In many cases the methods of Picard and Tavlory
may be considered ag alternative processes, but in the coge

where y is finite, and

one of the derivatives and thoga

succeeding it are infinite at the Initial point, such ag €9 the
case if the first power of 15 g positive fraction, thensexpan-
sion as a Taylor series fails, but Picard’s methofPymay still
be applicable (see Example 2}. Tt may be wemarked that

Lot the.diﬁefential equation be written in the form

NS

d
= Iz, ),

direct substitution of the values of 4

The vaious method of procedure is to change the origin
to the initial poing (%0, Yo) of the range by writing « - Ty
for zand y - Yofor y, and then to Proceed upon the assump-
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tion that for very small values of the new x the new value
of ¥ may be represented approximately in terms of @ by
the eguation

Y= a.a"

Upon substituting in the differential equation, the con-
stants @ and » can be determined and the expression for y,
taken as the first approximation. This expression p, is.
now substituted for v in f{z, @) in the differential equationy
and a farther integration supplies a new and more accufate
expression for y—say, y,. Repeating the process proyides
closer approximations at each step, and the pr'gcéss is
terminated when two successive approxima,t-jqﬁs provide
values for ¥ which do not differ to the degree\of accuracy
initially specified as desirable. The detal3 of the process
are hest followed in particular examplegs

Example.——Consider the differential equation

dx

subjest toa =0, ¥ =0. o3

Suppose a solution fo bé ‘required in the neighhourhood
of z = 0. For a suitghle first approximation at & = 0 let
%, = a . 2*, then, spbstituting in the equation (i)

N\ s
W gt le=a—ad . . . . (i)

@=xﬁﬁ§ﬁ"; N )

this equa,tigﬁ.\”:ﬁa,y be satisfied approximately when x is
small by gquating two of the terms provided in that case
the ot&{éi\is negligible. Thus writing
O\
\ n—1=2
Ane’ an =1
N équa,tion (ii} is satisfied; for when » = 3 the term ™ is
128, which may be neglected in comparison with &3 when x
is small.
Therefore

/7N

gy, =3 . . . . . . (i)

is the first approximation. By trying the remaining possi-
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bilities, it is seen to be the only valid first approximation
of this type for small values of z,

The same approximation is also found by inserting the
initial value of y and leaving the independent variable in
the expression.

If the value of ¥ is now replaced by 2% in (i)

- R
therefore Yy = fo . (@ — 328 . dz - > 2
Yo=4. 2% — % ‘ '-&: (iv)
Replacing y in (i) by the right-hand side of ’Eiir)
we [ e @&
= j:(:\cz — ia% L %—%5) .dx
=%$3—%+3—:{%{—.“ e 2

neglecting the term ma:15 for the third approximation.

W\
6.11, Convergence\&‘tfle process,

The series obtained is rapidly convergent for small values
of . The, eonvergence of the process in this particular
example miay be shown as follows,

Lng}E.t’epresent the nth approximation, then
N\

Q DY 1.1

_JR — @ 2
"N\ — = ¥ __
A o ¥

hence
zéx"—"o ¥t . de.
Now, the correct value of y may be defined by

y:Lm(xz—yz).dx=Jﬁﬁ—-l)zyg.dx.
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By subtraction, therefore,
i —y= | dw— [ g2 d
Ynt1— ¥ fo y*.ax fo Ya© . OX

— [y o

= [ = 9t + ) - d. A
Denote (¥, — y) bY e, the latter being therefore a fiinc-
tion of 2. e\
Then €p 41 = — Efﬂ(yn + y) .dz “ (”.}‘:
hus lenstl = 1 el + )21 20"
b\]
] p \ ?
h 5 =3 - n 178 '" hd
therefore l€n 11 <J{; lea| - 1y ‘}'\Q* dx

All the functions under the mteérél gign on the right are
functions of x. |e,| may vanish at points in the range, but
remsins positive, and will af some point have its largest
value—say, ¢,. Similarlyy |(y. + %) will have a greatest
value—say, 2M,—somewhere in the range. Now, &’ and
M, aze independent-of 'z, therefore

\I}’;‘i—li < 26,,Ir . Mﬂ Wi

the integratjﬂi}vbeing carried through for dz only.

With the %bove notation, it follows that, as a particular
case SO
\ 4 enp1 < 2e/M,.2
\'\ €, < Qe T My_1.2

s

EBI < 251’M1 .

Since all the numbers are positive, the left-hand side:-s and
the right-hand sides of the inequalities may be multiplied

€t € e < (2. € et - ef My My 1. M,
Therefore e, 1 < (2¢)*. ¢, M. M, :...M,and

if M is the greatest of the quantities 3,

!

ey’ < (@MY . &
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Thus, however large ¢,” may be, provided that 2z <1,
then e,., may be decreased indefinitely. The process is
therefore convergent provided the range of @ is loss than
ﬁ. In effect, 3 may be taken as the largest vaive of y
in the range. This range of z i3 not necessarily a measure
of the whole practical range of convergence, as is obviaus
from the manner in which the inegualities have “geen
constructed. O\

It remains to prove that the values of y s§ Ybtained
actually do satisfy the differential equation. The mere fact
that %, —y may be made indefinitely sm@ll dees et in
itself imyply this. The curve for g, might»}foss and recross
the curve for y a larger and larger gumber of times as »
inereases, and the slope of y, at anypeiht may consequently
differ considerably from that of y,%hile |y, — y| diminishes

indefinitely. P\
Now ,%&4'_1 = 2 — 2,
therefore ~ Ynt1_ q;ﬁ,_!_“ R 2 2
dx . 5 Yup1® = Yo + yu
\ = (Ya+1— Ya)Wn 1 T Yo
'\’” i = {6714-1 - En)(yn-;—I _:" yn)-

But gince [eay 1| and |¢,] diminish indefinitely as » increases

d’.?l |
thu:s”\';ﬁ&x—“ﬂ_ a? + yﬂ+12‘ = lent1~ €] - |Yasr + Yl

':\\“ < {Ifn-;.ll —+ len]} . |?/-n+1 + yni

fand therefore the right-hand side can be made indefinitely
> gmall; hence the differential equation wiil be more aceur-

ately satisfied by y, as » is increased. The process is there-
fore convergent, and leads to a more and more acourate
solution of the differential equation.

The example which has already been considered was
taken as solved when a series for ¥ was obtained in terms
of & which gave the value of y to a sufficient degree of
accuracy in the range of x required.
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dy
Thuog = — g
dx y
was found to give a solution
28 ad 9511

Y=g T i T37.9.11
for vahies of z in the neighbourhood of the value z = 0.
This series can now be used to calculate the value of Y4
corresponding to any given value of 2 in the range; thus

when A\
y = 08 -
_{0-8®  (0-8) 2(0-8)11 AN
Yy="3 TR TET.9 Iy

— 016742 correct to five decimal places.

Note—The convergence of the successive approximations
to the true value is examined for ,t:h%}"general case on
p- 38, o\

In the example just considered(itvshould be noted that
when sufficient approximationsy were made to give the
necessary degree of accuragyat x = 0-8, the process was
termirated, but for highet-values of x the series may not
be sufficiently accuratgs, In such a case it may be better
not to carry the &pp}oximations further by this process,
but to begin agai'ftom that value of x as the new origin.
Example.—Consider the differential equation
ST oy L B
:t\'“" de Sty '
given\t\h}é' when # =0, y = 1.
The\rigixl need not of necessity be changed for

”\“\' ¥ = %o+ ﬁ: (gg) - de.

To obtain the first approximation y is put equal to 1 in the
right-hand side of the differential equation

ylml—{—ESx‘*.dm:l—i—Gx*

gy = 1 +j:(3m—* 1 Gad)de = 1 4 6at + da?
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Similarly

bo =1+ [ (27} 4 6f 4 dai)de = 1 + 623 4 27 . g0
0

yo=1- fo (304 4 62t + 427 — gai)de
=14 62t + 407 + 3at + J4ai
and N
¥ =1 -i—f(f%x—* T Bt 4 ot 4 fat 4 Ltal)de O
=1+ 62t 4 o+ gt 4 30 ket

The method in this case gives i as a power ser:ieé,‘.ih @,

Taking x =02 D
y = 407306, .V
The first error term is =tz . &%, and i{gyalue when z = 0:2
is 0-0000028.

Hence in the range 0 < & < .Q-"Z'}he formula for y; may

be taken as correet to five degimal places.

For higher values of » the\error in using the expression
increases. The approximations may be continued, or the
process repeated with new initial values ;

Thus g, — 4.09306 4 j (324 4- 3-07306)d.
EN 02

Similarly, y, anﬁ*}a may be ohtained.

The method’outlined in the last two examples is suitable
only when\fhe integrations which have to be performed are
capablé/of evaluation in termg of elementary functions. In

certain’ cases the difficulties in the repeated integration
in¢reésse so rapidly in the successive approximations that

‘,t‘hé method becomes impracticable. Methods will be given
\“\} Jater which are designed to overcome this diffieulty.

6.12. The application of Picard’s method to simultaneous
differential equations and to equations of the second
and higher orders,

Congider first the cage of two first-order simultaneous
differential equations,
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jg = flz, y, 2) | given that = — g,
dz ¥=1
ﬁ = g(x: ?;", Z) =2

For the first approximations
¥1= Yo+ }; J(=, 90, 7o) . d

7 = 2y 1 L 9=, Yo 25) - do. O\

°\
These values should now be used to obtain cloger approxi-
maticis by substitution in the original equatitns) and
integrating a second time, R4

thus Y2 = Yo+ L f(@ g1, 241} d{ \
M AN
Zp =2 + L gz, ¥, %1}\ dz.

This process may be continued ‘ntil expressions for y
and z are obtained which yieldithe prescribed aceuracy in
the given range of values of{w The method may readily
be extended to systems of tere than two equations.

In the application of the'method to differential equations
of higher order than(the first, it should be noted that a
differential equatjo}x\of order n may be reduced to an
equivalent systemof # simultaneous differential equations,
each of the fissf-order, and provided, therefore, that initial
values of tlis'Variables and of all the first (» — 1) deriva-
tives inthe original equation are given, the above method
is at onoe applicable (see p- 144). A second-order differ-
enﬁigl.’équation has been chosen in the example now given
below to iltustrate the practical working of the process

“escribed above.
Example.—Consider the second-order differential equation

dy W _ ey — 0

dy =1, at & = O are the initial conditions, then

If y =1, ¥
y l)dm
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this equation may be integrated by the same method of
successive approximations,

' dy __
Tet = ] ‘
dz ] (@
then i = Oy — Sz J N

These two simultaneous equations are equivalent iq the

original equation o

p
N
N’

y:l,—f—jz.dx PR
0

>

N
£ '“
z= l—i-f (6y — 32e). da.
pl \/
First approximation g, = 1 4 » using\z = 1
and 2p = 1 -+ 6/

Second approximation obtaineg'b’:%y ingerting the first
approximations for y and z in efuation (i)

¥2=1+z+ 3x§:{"1::‘
=14 L (65}9& — 3z — 182%) . dr
=1+ Q’;'f- $a%(— 63).
Third approxi ation

Yo D 2 o 322 4 fod(— 1)
ST bt ek et 4 ),

Fourthsapproximation
"\\.
'\\i”; Ya=T1-t o+ 30> 1 3% — (&® 4 $28)
R\ g =14 6x + -ng(—- fat — 225).

" "\LFﬁth approximation:

\ 3

Yo=1-4 o4 822 4 L% — mab 4 . .
The fourth and fifth
the term in o5,

If, therefore, a solution is required correct, say, to four
decimal places, a ran,

ge of x may be chosen that ensures

that %2% may be less than 0-00005. Thus 2 must be less
than 0-23,

approximations for y agree up to
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The expansion
¥y =142+ 3?4 328

will give a value of i aceurate to four decimal places prov

75

ided

x lies in the range 0 < @ < 0-23. It was clearly unneces-

sary, therefore, for this purpose to retain terms in
expressions for y and z of degrees higher than a5,

the

Example—To find series by Pieard’s method to represent}\

x and y in terms of ¢, given that O\’
dx o7
p=Ern.a . (M
== —8.y . L& . (@
a=—y - O W
subject to =10 \
y — ]_ 'x:\\\.l
t=10 ~..‘\"
From (i3} E \%
ylz} _II_ G(—t}.dt ,::s
a2 Ny
= 1 — _ 8
-3 N
£ 12 N\

T 273 oV
’:‘\; 32 t:i s tﬁ
P e N (N [ —
Yo ﬁJﬁﬁ Ty 8)( 2) dt
R
Y-t tsm
N
NY ‘( r_‘_?_?ﬂf’)
\,.xzﬁjo P —T5) e
_rL 6w
27730 280

: 1, , 1. 3
o= 14 [ (=t 3 + 55 ~ 350
it 85

12 138
(1-5+5+5—wm

). de
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= 1, 1 5 S
:1—1—]0(—t—]—§32—|-§ts——--—t4—~ﬁ(—}t 4—1-{]:\..51:

12 )
A AT R
wszl;(l"i-g-l*g-—;—;)t.dt .
3 5 6 7
“e ot O
(1—§+§ﬂj§?%+%)a
: B oa 5 ¢ .
=1_‘§ ‘6 %hi‘géﬁ%ﬁ”i«i}\“‘
x5=£<1_|_§+§_%>'tid{;{3
2P § 7 LN
=t§+3t_0+4f_8'—%£0,{};}“
yﬁ:l*fo‘(*i§§4'%+g~.,)
£ B o 5 s
\\ (1‘§+§+‘g—1—2“‘1—46)d¢
B L bl

Hende x and y are expressed in terms of ¢ as series up to
the&e’i'enth powers of {. It should be noted that the
final stages are made considerably less tedious when the
. {\terms which have established thems

) omifted from subsequent integratio
they are rewritten at each new ste

6.13,

elves by repetition are

ns, although, of course,

p.

The Picard method when an approximate solution is
available in tabular form,

(a) Boundary conditions af one end of the range only.

Suppose that an approximate solution of a differential
equation can be determined over the whole of the required
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range as a table of function values. Then the method of
checking and correcting function values which has just
been described may be carried out over the complete range,
and the function values thus found may again be checked
and corrected until the final accuracy is satisfactory for the
practical purposes in view. This amounts to applying
successively the sequence

i ERA) SO
the infegrations bemg performed ag described in, the Tast
paragraph.

For snmultaneous equations, second-order eqﬁaﬁons, and
equations of higher order, this process may\je applied in
succession, as in the cases which have bee@escnbed where
a solution was found in functions of zi with the difference
that the integrations of functiong™of’# are replaced by
numerical integrations. \ ¢

Example.—-Let us suppose t,hab an approximate solution
of the differential eq_uaialon

2
%—% =@’(4e“ — 1) 4y

is kmown over the ré‘n\ge 0 < # << 0-5 subject to the houndary

conditions x = ], By =1, -2 = 2.

? d
{y); is the\ﬁrst approximate solution which is supposed
glven \{1\5‘11011](1 be noted that if the differential equation
is of tk’é orm

d%y dy
\~\ \ dx? :f( Y dx)
then the values of k T ) are also required approximately

before the solution may be improved. For this purpose,

supposing that values of y alone are given, then (y")l (y")l

should yield a sufficiently accurate value of (y,),". Su:mlar
€xpressions may be used at other points, but the derivatives
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at the two end-points should be estimated from the inter-

mediate values.

In order to show the convergence of the process, the

NUMERICAL SOLUTION

numerical values are fully tabulated below.

[
, L8 4e¥ — gz, (i;_l;’_?’]: Vv, ¥ ‘ ¥ )
0 1 3 1 1 4 |z '
0-1 | 11051709 | 57804408 | 121 | 11 | 48801 24490
0:2 | 1-2214028 { 47458960 | L4d | 1.2 | 5946 2%aea
0-3 | 1-3408588 | 59386132 | 1.69 | 1.3 | 7.239 pedhgets
04 | 1-4018247 | 74103340 | 196 | 1-4 | 8-8L0 hod-4470
0-5 | 1-6487213 | 0-22£4059 | 2.25 [ 10328 54327
| &N '
LY _
&N
e | ¥ ‘ Vi | w” | ey Y Error,
N
0 |1 1 4 2, (N 0

01 11-2202 [ 11055 ] 1-8858 | 2lg4%80 1-221402‘ ©-000001 |
0-2 | 14937 | 1-2222 | 50681\ 28370 | 1.261826 | — 0000001
0-3 | 1-8251 | L3510 | 7-2898\ ¥'64438 | 1-822120 : — 0.000011
0-4 | 222671 14932 | 8.9035. 4-45184 | 2925571 | — 0-000381
[ 05 [ 27233 | 1-6502 1087345 | 5»43695J 2718344 | —0-000062
& !

W

The error in the,)f?iaa;l column has been calculated from
the actual solutign, which is y = ¢k,

(b) Boundayy,conditions at both ends of the range. The
process app@'ed to equations of this type is fully described
in Chap YV, "p, 162, where examples will be found illus-
tra,ting.\’thém.

D> Examples.

W

O\
‘,\\1. Establish the convergence of the se guence

O

F mz
#E+ 1

the differential equation

N yn+1=j dz

0
to the solution of
% % + 1) = 2%,
where & = {), y = 0,
From the sequence find y at x —
to three decimal places.
SBhow by integrating the differential equation directly that

¥* + 3y = 22,

025, # = 0-5 and = = 1, correct
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and hence cheek the values of y obtained at x = 0-25, 05, 1.

Ang. xz: 0-25, 05, 1-0.
y: 0-005, 0-042, 0-321,
. dy 2y
2 If 2 TV BETEw

where ¥ = 2:667 when x = 0-5, find ¥ to two places of decimals
when & = 1, using the sequence

pnr1 — 2607 = [* (H g i A

3. Ohtain power series up to fourth powers in ¢ for x a.ngl ngh'.leh
satisfy the simultaneous equations

dae ..,f\*
Yg =2 —y \Y;
dy _ .o N
=Y —w+t&~.

by Picard’s method where { = 0, z = 0,;1; : l.

N .

6.2. Solution of a differential.} équatlon by expansion as a
Taylor's series. Ny

*

Conzider the equatwr\"\
\\ Wt

subject to x -Alv y=0b.

By substfbu{;mn in this equation g, is calenlated at
r=a, b

Dlﬁf»’x tiating the equation
~O dy __ dy
and by substitution in this equation yo" is evaluated at
&= q, Yy = b,

Similarly the successive differential coefficients are
evaluated at the initial point, and the value of y in the

neighbourhood of the initial point is then given by the
equation
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1 d
y—b=@—a(P) + 50— ar(FY)

+ 3l! (x - a)a (dx?j + .

The range over which this series is valid depends upon
the accuracy required in the values of y, and having first
specified this accuracy, it is easy to determine by dirvect
substitution the term at which the series may be endéd:

For an equation of order » expressed in the foruie. N

dﬂy iy ( . dy d2y dr-ly ) O

’d»:.’l‘:, a2 " an |
: - dy _ 413{‘*19
subject to x =g,y = b, dr =% g1 G- the

same procedure may be adopted\\for by substitution

A,

in the above equation :ﬁ% 1s fbund and by successive
A+l

. . . d
differentiation W%’ etc:,,,:;:na,y be determined, and the

series for y written as, He}oie An example of this process
will be found in theldescription of the Adams—Bashforth
method on p. 119

Example.—To\find a power series in z for y which
satisfies the Watlon

,,.‘ d . dy
2O ot g — Gy =0
N iy
R.b"]‘ect tox_O,i =01, y=1
» y' = — 3oy’ 4 By
~\J y =6
A ¥ = —3zy" — 3y + 6y’ = — 3zy” 4 By’
?/n’_” = {3
yw = 33‘-?}'” _ 33/” + 3yn — Sxyn:
Yo' =0
yv o 32:?{“' - gy”’f
Yoo = — 09

y"i — 3va — ﬁyiv
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ORI
yvf — 32‘?@;“ — gyv
Yo = 4 0-81

1 3 9
e . 2 s - [ Y R
Hence y =1 + O-lx 4 32* 1 2% 100° + 5600%
To find the range of x for which this series represents y
correct to 0-0001 up to the term in 2%, write the last termj

equal to or less than 0-00005 Ko N
0o -
=zag %1 < 0-00005 A
ot < 91280 P\
1 9 '..,.\"
#, < 0-6. ’

AN
6.21. Application to simultaneouns equaﬁt{ﬁs}
The process may best be illustrated-by application to two
simultaneous equations of the fitst order
PR,
= =il v, 2)

N

oz
and .m& — gl(x, Y, z)

subject to x = xn,\\y = Yo % = Zp-
The two equations determine y, and zy.
By differenfiation
\’\ ¥ = fol@, ¥, 2, ¥ 7)
‘\'\\w’ 2" = gs(%, ¥, 2 ¥ 2').
_Bhese equations determine y,” and 2z, since all the
~Quantities on the right-hand sides of the equations are
nown at the initial point. Proceeding in this manner,
s, 2", ete., are determined, then y and z are given by
the equations

]. £ 1 e
y:yu‘}‘(x“—ma)yo"'i‘2)'T(x‘_x0)gy“ _]_m{x——xo)ayo e

] fer
- zi)'i_ (x_ xo}zo,—i_ 2]_! (x__mu)2z0” + 3._1 (x _xn)szu + .o
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In addition to the example below, a second worked
example will be found on p. 83.
Example.—Obtain power series in ¢ for x and y which

satisfy
dx { d
G=ty = ety
subjecttox:(),y:——l,t:[) \
¥ =—1 ’r"x"\.
v_2_2% O
Y=y S
2 = — m:\'(
er 2 , , ‘" 2yn’:
¥ = — 2L . ZA
=W o (427 (K
v L (=R
) = —

" ¥ ey’ ey
~O T _f”if*)

Y =2y
¥ 2414109
Z/{i}:\,-:_—’ 2yyu+2y!!__xn
G =2 +2=14

:"\‘.,;yoiv . — 2yyﬂ'f + 2y!y!! __’_ 4?/’?” . x;u
N BT = -84 4— __yg

Up to fourth powers of 2 the expansions are therefore
AR Rl S LIS ¥
Y=—14+t4 35— 301

Example—To begin the solution of a pair of simul-
taneous equations by Taylor’s expansions.
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To soive the equations

dx dy

il ) N7 =@—ty . . (1)

where ¥ =— 0 and y = 1 when ¢ = 0, the values of » and y

to be corvect to four decimal places for the range 0 < <C 0-4,
By divect differentiation of (1) we obtain

o =wty 4@ YN O
xr-.ff — 2(3;’ + y;) + (xn Jx_ y”)t ) .'\“.\
T — 3[&:" + yn) _+_ (xn.r + yu:)t . '\}

yl o= (_‘1’,‘ —_ t)y , "f '~‘:

yr.r — (x’ _ l)y -+ (ﬂ‘,‘ — t)y ,"’.\\.

g =2y + 2 — Y+ @ = N
¥ == 1y - 327y - 3z — l)y"x'-i\’(x — )y
Hernce, on inzerting the values of gfand y at ¢ =0, we

find PNY%
xo; =Q, xerr =1, xam = 0, xoiv ;’Q, EDV = 4, xﬂvi = 15
Yo =0, = — Ly = l’yﬂf‘;g 3,9 ° = — 5y —=— L
Thus, using Maclaurin’s THeorem,
"N\ 8
N 4 ¢t

\ 2
y=1S5+gts " T
N\
It ig cleprMfom an examination of the last terms that »
and y  afp“determined by these formule correct to five
decima‘bfﬁaces for a range of ¢ extending up to t= 0-2,
Theproblem is to extend the table for the full range required.
2N\
o\
) Examples.

1. Develop series up to the fifth power of the independent variablo
for sterting the integration of the differential equations on p. 78,
and compare the results with those obtained by applying Pieard’s
method to the same problems. In each case state the range over
which the accuracy is five significant figures.

2.

2. Prove that the solution of {%% +x.y=0 subject to x =0,

d.
=4, d_f: = 0 is given by
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1 1.4 l.4.7
yl:A{l_E_!“’”rW“’““—s!_“‘”r g }
. d .
and that the solution subject to z = 0,y =U,£.—_—Bm
2 2.5 2.5.8 , )
y,:B.x(l-—?xa—[—,?—! mﬂ"‘——lol St B .

dy
Hence writs down the solution subject to x = 0, ¥ =1, 4 1.

dlz
3. Expand y as g power series in z to satisfy the equatw:n\
e SN TIPS &
Tt de T =Y N

N
up to fifth powers of = and subjoct to & = 0, H, ——:w"l,j—g = -2
"s\

Ang, ¥y=1—-2zx4 %xz&;’xa-{_gx*:_.sﬁsxS—i- .

SoruTion orF DIFFERENTIAL"EQ.UATIDNS IK SERIES.
6.3. The method of Frobeniqs;
The method s appiied to,@fiﬁéi‘entia] equations of Lthe type

2, N
g—xgr%;p(mjg—i’ Fae)y=0. . . . )

For a solution u{ tho neighbourhood of 2 — 0, ple) must be
expansible in g @ie’s of the form p(z) = 2o e tapt L)

and g{z) in @\series of

the form g(a) = = (b, + byz + byz® + . . ).
Any of thg eoefficients

A Ty, @y, @y, vlC., by, by, b etc., may he zero,
and .bc't}?. the series in hlvltzke’rx«;ﬂi musg b?a c(!)nv?-;rgent in %18 region
considdred. Thus ap o 0, p(x) and qfz) may, at most, have
infififties of the first and second orders respectively. If p(z) or

have infinities ag above at & = @, and a solution is reguired
¥ = a, then the difforential equation is
ging the independont wariable to t, where
7% — aand the equation deait widh sy bolar

Let Y=ot ewtept +...). . . . (2
bo a trial =olution valid in the neighbourhood of x = 0.
1i’ferent1at-ing *
g,
%‘Cow‘“rc’l(w—mwrcs(a +2b.@ttt 4L L L (2.])

* Series (2) ang

(2.1) must be nniformly conver ent in the region
where the solation i ) . 4 & g

18 required if this differentiation is to be valid.
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d? - e - ; -
&.;i:% = e — T2+ Cylo + 1) . 2?71

+ Oz 4+ 2}z + 1).x* ... .

(2.2)

Substitute from {2}, (2.1} and (2.2) in equation {1}, then, in order
that the serins (2) mnay satisfy the equation idenlically, the cosffi-
eients of all the powers of 2 must vanish.  These coefficients equated
Lo zera vield : (@) the possible values of «, {8) the law conneeting

the coefficionts Oy, Oy, ste.

The ccefiicient of the lowest power of x is clearly that of x°-3

ViZ. Coor{ee — 1} + Coz v ay + Oy By
= (yfa? — (gy — l)a -+ by}

Now, €, must not vanish, and therefore

wf — @y — L+ 8, =0 . . W

‘~

%

- N
RE )

N

\

(3}

Equation (3) is called the Indicial Equation, and its foots lead to
posaibie solutions of the differential equation. THe\final forms of
these solutions depsnd upon the nature of the redty’of the indicial
equation. Three main cases will be OOHSideFBFI\\lﬁ{id some subsidiary

cases,

Caes L.
by an inieger. PN
Consider the equation « \J

. 4 ,"’n
2x9§~w-% — xj—g +~fl =~ .y=0.

Roots of the Indicial Equation différent, but not differing

{i)

Let g, = a®(C, + O + Op a2 + . . .) be a trial solution.

I D= QxE(;i;;—xflt—"‘:}\-(l — %)

Dy, = P( £ ')
A=04{ "%

=~ zoq;,fz(}i Fa)n 4 a—1)amte — (nfalertet grte —anted]

= ‘%O“,’,[{(n £ a)(2n 4+ 20 — 8) 4 Larte — grtete]
N[22 — 3+ e — 2ot
A\ fr[(c'of[{(l —‘,—mc:)(2 1 2 — 3) + Leetl — 22+
SN Gl 4 w4 4 20 — B) 4 et — ]
a \4 + ete. . . -
\ / 4 O, _glitn + & — 2¥2n 4 20 — T} Ngrto-2 — gnto]

+ O 4+ o« — 1){2n + 2x — 3} + [janrta-1 _ gatafl]
+ Uu[{l(lé{i c:)?Zn 1oy — 3) + ljarte — artete]
+ ...

In order that the coefficients of the varigus powers of a should

vanish
0, = C,_y/(2n + 20 — 1) + o — 1}

The series for y, is thus

{ii)

N\



86 NUMERICAL SOLUTION

ki g E) xs
0= 0021+ i

&t 7
A ETERETcrRa ) s v BRI DR )
for in order that the coefficient of 221 should vanish O L {228 4l o)
= 0, and as this does not vanish by virtue of the indicial coeation,
it follows that €, = 0, and if this condition is consider lin cog-
Jjunction with equation (ii), it will be soen that the cos! FOTLEEND:
all the odd powers of = in the trial solution must be Zerh. G 94y 8%
given by equation {ili} is substituted in the differeniial @iaagion,
the only term which does not vanish identically is that™s¥ [Owest
degree in i, viz.,, Cya®. (2o* — Ju + 13 Wy
The Indicial Equation is obtained by equating to 8% the coeffi-
cient of this term1 of lowest degree in . g,

Thus (208 — 32+ 1). Gy = 0NN

Y

As €, must not vanish,

therefore 20 — 324+ 1 =0 ,x’,\\', N (L4
f.e. either o = 1"x\
or [ 4 :‘%.’

1f these values of a are now substituted in turn in equation (lit),
the following series are obtained "
2 ﬁa ® ©
—c {1 e P\ A A
dy‘ R R W R e e I f
an 4

=0, ] X, ot . 1
¥ = Co xk{?z.3+2.3.4.7+2.3.4,7.5.11T'"j

These seriesyare“hoth solutions -of the equation (i), and therefore
the completg, solhtion of (i} is

74
- O\ ,f] _x_s' x ' x®
y¥= AN +2.5+2.5.ﬂ372"._5.4.'9.6.13+"'_}

' ) 2 1 &
VB 1y B @ e
N Vet s gty oo T
~Xhere 4 and B are arbitrary constants.
g \ An general, if the roots of the Tndicial FEquntion are different, not
\ \ " differing by an wteger, fwe independent solitions of the dyfferential

equation are oblained by substituting in turn the roots of the indicial
equation in the series for

Case Il.—Roots of the Indicial Equation equal,
Consider Bessel’s Equation of Order Zera.

g b .
wd—x%+€i—z+:cy=0 Ce

As before, let ¥, = Eungﬂ’f“ be a trial salution
=

= O® + 0@ L - Opm¥e . | . Gantn 4
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Coefficient of term of lowest degree in x, viz. &*~1is (fyns
Cocflicient of 2% is (o + 1)%. C,,
Coefficiont of 2= is (o + n){e +n 4+ D0, , + {a + v + 1),

O _y=(ed-n-t1¥. 0+,

The coeficient of #°~ ¥ will vanish if

w=0 . . . . . . . (i)
The ccofficient of the isolated term in #* will vanish only if ¢, = 0,
and by virtue of the relationship between cocfficients, ~
viz. an+1 = T - IJ'J(':( + n 4 ]}2, N o
the cosfficionts of all the odd powers of z vanish, R\
Tho saries for y, 1s therefore 3‘}

%

(iii)

_ N w? } x N
n=Co[1 - it e Tt
If & is put equal to zero in (i), only one solution of"the differential
equation iz obtained, and therefore the most genpal*solution is not
yet found. A
II the series {iii} is substituted in egquatiohdI), the term which
remains is Cy.x!. 2714 This term vanishes when o« = 0, and ifs
partinl differential coefficient with regardite, & vanishes when o = 0,
ie. 20, a1 4+ Qgala®~1. log, » vanished when o = 0.

If D=z é% + ’;} \ —’l-x
L [Diy3) = 2Cqet + Opart log .
By & well-known rule ﬁ“ﬁljﬁ"&)ﬁlﬁi&l operators, this may be written:
D{%ﬁ\—‘—: 26’0%““1. + Cp? .zt logx

From this l&s{.\e’huation % is clearly a solution of the differential

equation if\’e;}s:'pub equal to zero after the differentintion has been
carried &Q; This provides the socond solution and this taken with

the firg\gives the most general solution.
R DR a (— 1] J
N\ N yu = O [1 " ?121(05 T O £ 4 - . - (« + 2n)
\Therefore

By, _ L [% & . (— 1F :|
oa = Yrloge + et Ll e e (x - 2

Let we= 1/{e + 20 + 48 . . . (x + 20

log u = — 2{log (o + 2} + log (z + 4) + .. - + log (e + 2n}

1 #u 1 1 1
Hoe 3= —dpTmtEEe )
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du 1 1 1
i ‘2“{<a+2J+(a+4)+' At rE)

and when « = @,

3—“=W:1—uny{1 tEHgEe. <)
Therefore ~
+co {5 - Zu(1+ 1)+ 5 tata) .. 1}'?:’ (iv)
[4:demg = Ooa:"{ ! — ;: +§% _ %"_ﬁi N } L

¥f the right-hand sides {iv) and {v) be aﬁcl\ v respectively, then
the most general solution of equation (i) <&

y:A.u-;—oB\}i:.

In general, if the Indicial Eguatqlo’h,\haa G repeated roct, then there
are two independent solutions obtgiher by putting o equal to this root
in the geries for y: end in the expfession obiained by differentiating
thig series partially with regardie o. '

f.e. [g;];;;}; and [%y;‘lw,

where ; is the repegted root of the Indicial Equation, are two inde-
pendent solutiong“of the differential equation.

Case III.—Roofs\different and differing by an integer.

{e) When the, series obtained by inserting the value of one of the
roots has cgefficients which assume infinite values :

Consid;zr Bessel’s Equation of Ordor Unity

n \, d2 o ,
"\\ xﬁd?%+-xag+(x2—l).y=0 N 1
"‘lﬁy" Y= [0y + O + Cp* + . . .].
s Coeflicient of term of lowest _degroe in x, viz. % is Oy(a — 1)
M:"\ Coefficient of xot1 iy (4 1).a.C + (@ + .o, —0,

\‘:

= (o;2 -f— 2(!} . 01'
Coefficient of s**is (& + m)(w + n — O, + la4-n)0, — O, + O,

= O(a + ) — 13"+ O,y

Theref - - Cas i
erefore c, @ 7 DernTDn - - {ii}

Since the eoefficiont of the isolated term in #9+1 does not vanish
by virtue of the indieia] equation, C'; must he zero, and by virtue

of (ii) ail the odd coefficients in the series for y, are zero. The
series for ¥, is therefore
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4

. x? A @
{o 4 ¥ + B) " (a0 + 1) + 3)%(x + 5)

¥ = Cﬂ"“:ﬂi—I

xs [y
CES e e o R B
The Indicisl Equation is @* — 1 = 0.

Thus = 4 1.
If « iz put equal to 1 in equation (iii), a solution of the equation
(i) is obtained, but if » = — 1, all the coefficients of the various

powers of @ in the bracket {x* and successive terms) becorms infinite.

The difficuliy may be met, however, by changing the constant (f

to k, where k(x + 1) = C. N\
Subetituting in the series for y; yields the eguation N

\.
1 and
x N

17 3 mz
i, = k' [(a + 1} T T 3)+(tx + 3Pz + 5}

#%7 2

»? 2\ - .
ST e e BN I

If {iv) is substituted in the differential equa.tioxn,:tﬁe only remaining
term is &

(e & 1)a? — 1). 2% = hla + 1:)?(;‘— 1). z%

. dar dols o -
Thus, if =t o =y xt — 1
1 D & dmz +d$ ,dg;'T ( )
Dy, = ko + 1282 — 1). 2%
Therefors as hefore o — — Jahhstituted in series (iv) and l:%%‘l” 1
ohtained hy differentiatifighéquation {iv) and putting & = — 1 after

differentiating give tsS:Q\iridependenb solutions of the original differ-
ential equation. \
Putting « = —. 1.0 (iv) gives

A\ ¥
£ i xd at i
s L R R A S R R

ay '$)
% ) = gyl

S pi{1 455G+ D dwml+itd)
O % L L I

It is found that when @ = 1 is substituted in equation (iii), the
series obtained is & numerical multiple of the series given by (v).
This result might have been anticipated, as clea.rly three independent
solutions of the second order differential equation would not have
been possible. The general solution if series (v) and (vi) are denoted
by wand v is

y:A.u—]—-B.'v.




90 NUMERICAL SOLUTION

In general, if the roots of the Indicial Equation duffor by an integor,
then the constant O must be changed to k. (& — o}, where p 18 the
smaller of the twe roots of the indicial equation. If y, iz the series
now obtained for the solution, then two independen: solutions of the
original differential equation are obtained by substituting o« = p in i

and in %%‘ after differentiation.

Case Illa.—Roots of Indicial Equation differing by an intezer and when

a coefficient of the series for y, becomes indaterminate,

Consider the equation QY

d d . :
(1-::2)&%4-2::@%—31:0. SO\ - 0
Lt ¥:=Cp® -+ (ol | Corstt '\’\

be a trial sclution ; substituting the series intc“ﬁl‘é‘%quation (i},

Coefficient of 2~2 js g« — 1)0,. (Y
Coefficient of 29~1ig {4 + 1}, . O
Coeffleient of gotn {g {0 4+ 7 + 2} + n\D ) 7 I
> (@ A )z + n — 1)0,
+ (= + n). 260 3¢,
fe (@4 n 4 2)(x 4+ n 4+ DO + n)e + 5 — 3) + 3.0,

In order that the differential‘equation may be satisfied
o faPn)e+n—3) +2

nt2 Tg‘(a.:{— 7+ e + n -+ 2)

Now, the poeﬂﬁciqnﬁ'of the isolated term — (x | 1). 2 2=~ may

vanish by virtue 0f ‘the Indicial Equation, viz. afez — 1) == 0
Hence I, is «hdetermingte. Using the relation {(ii), therc are

two series obtaingd when o — 0, one from the terms of even degres,
and one froﬁ\ tms of odd degree,

1—_:(;993"1 Mx—3)+ 3
Y ,\“{ T e rnary @
oo 20 = 3) + 3 a2 - 1) 4 3 ]

b @+ T}t 2)° (m+3W"‘”4+"‘J (iii}

=C.a (= + I)x —2) 4 3
“ e+ e BT

¢, . . . (i

O
)
X

o) Ux + 1)~ 2) 4 8} (o + 3}. (o) + 3} .
] \‘:" +—_(&_‘:m)_h'm-xs"l----] {iv)

If we make ¢ = 1, ¢
with all the remaining
équation for ¥, the seri

118 no longer indeterminate, and must vanish
odd coeffieionts, and on aubstituting in the
o8 bolow is obtainod :

=0 (@)oo —3) + 3
¥ 03’[1+”‘——-——-—-(x+1}{a+2).33

poole —8) 4+ 3 (x4 2Hx— 1) 3
*(a+1)(ac+2}'q_(«-i-3)—"m"xl+ ]
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When e« = 1, this last series is identical with series (iv), when
@ = 0; hence (ili) and (iv) are two independent solutions of the
original cguation. In this case the solutions are
yr=Coll +4a* + 4. o2+ §. 4 o + . . ]

Vo= Cyla - 4% + } . Faf + . ]

The comyplete zolution is
# = Ay, + By,

Thus, in general, if the rovis of the Indicial Equation differ by an ¢
initeger, ainl of one of the coefficients in the series for y, becomes indeter-
minate wien one of the rools is substituted, then the complete soluti
s given by the series for yy, which then containg two arbitrary cons;{in\t&.

Examples. O3
L. Imiegrate the differential equation ,,,'\"
2, \/
x{-i—% teta). P s@yt ). yx0.
dx dx O

fi) When o = §. AN

{li}) When & = i A\ N
(iii) When ¢ = 1. N\

2. Integrato the equation \
@y o\ 0 -

3. Iniograte the equation, )
xgy;:m_nyz + (.’L‘B _ ﬂZ}y = {.

(i) When #» is not an infeger.
{ii) When » iz an i}t{riger.

7. The methq&s\“df" Euler, Runge and Kutta,

The f(}}k’)a}mg methods of determining the inerement in
& fUnGt{&'n‘ y corresponding to a given increment in the
indell‘,erndent variable x are to be preferred when isolated
Ni\n,cltéments are required, or where the increments in x lack
upiformity, since the processes are evaluations of formule

¥ substitutions. The methods are applicable when it is
Tequired to tabulate y at equal intervals in z, but suffer
from the serious disadvantage (except the modified method
of Euler) that no checking of the calculations (except a
Tepetition of the caleulation) is systematically applied. In
addition, the more accurate formule of Kutta, which it is
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essential to apply if considerable accuracy is required, are
rather unwieldy and laborious to apply continucusly over
a fairly wide range of integration. The methods find their
chief application in this work in starting the solution of &
differential equation which is required over a wide range.
Even so, before proceeding to forward integration the values
obtained are checked and corrected. The modified method
of Euler, if carefully used with small increments, *cam he
made to provide rapidly a solution of an equatien -which
may be sufficiently acourate for practical pucpoges, and
especial attention is drawn to it as the one methnd in this
section in which the calculations includé & systematic
checking process by successive approximation.

7.1, The method of Euler, O

H y is expressed as a func.t{b;} of x by the equatiocn
g—g = fl(w, ¥), the increment iy xco1."1'(es,polzlciing to an incre-
ment Az in x is given-@pproximately by the equation
Ay = flz, y)Az, the Ya{»{ie of f(x, ) being that at the begin-
ning of the interval~Az. Thus if (2, y,) are corresponding
initial values of/4he argument z and the function y, the
first increment{"Ay, is given Ay, = f(z,, y,)Az,, where Az,
is the first ificrement in x. A second increment Ay, in y I8
o Bts = f& + Axy, yo 4 Ayy) . Ax,,
where(A%; is the second increment in z. These expressions
ed
N\~ Y1=14, + Ay, .
R\ Y2 =91+ 8 = o + Ayy + Ay,
¢\" Proceeding in this manner, the value of y correspending to
)~ any value of z, say 7, can be obtained by dividing the
range x, — ¥, into  suitable intervals. The process is very
slow, and to ensure a reasonable accuracy very small incre-
ments must be taken in the argument. The method is con-
sequently suitable only for functions which change slowly

with the argument. The increments in = may be increased
or decreased at will.

N
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7.2. Modified method of Euler.

In taking the value of g:?’; at the beginning of an interval

in place of the true average value over the interval, a con-
siderable error is made, which in general becomes intensified
ag the process is continued. In practice, therefore, the fore-
going method is modified in the following manner. The
values z,, o, found above provide an approximate value of

da dx
of (3%)0 and @Z)I is then multiplied by the "i'gei"@ment
Awy, thus giving a more accurate value of y, than before—
8ay, ¥,,. Lhis value 3,; may be used to give’a third ap-
proximation y,,; if necessary before proceeding to the next
interval. This final value of ¥, is thenr\hged for the second
interval, and the process is repeatedy )

Using the notation of the next ‘paragraph, the error of
this process is o

BB fyy 4 HiasF T Sl + Folfs A+ S

The foliowing examplés will explain the two methods and
comparisons with la@, methods are given at the end of this
chapter. . b\

Example.—Detetmine the values of y when z = 0-02,
0-04, 0-06, (%08, 0-1, given that y = 1 when x = 0 and

dy ¢
e £
de ™ TNk

% at the end of the first interval, say, (dﬁ) ; the avera’g}g\
1 °\

C\leargr at =0,y =1, (d?”)oz 1.

. 7
'Th (%

\ en Ay, (dg)o . Axy

. = 002

2.8, oy = 102 at x = 0-02

(%) == 1-02 4- 0-0004 from the original equation
= 1-0204

Q!
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giving Ay, = 1.0204 x 0-02

= 0-0204
Thus Y, = 1-0404 at & = 0-04
iy _ . .
(dx = 1:0404 1 0-0016
and Ayy = 1-0420 x 0-02 ~
= 0-0208 \
ys = 1-0612 at 2 = 0-06 Oy
(3—2) — 10612 + 0-0036 O
= 1-0648 N
Ay, = 0-0213 retaining four ﬁgﬁres only
Yy = 1:0825 ab & = 0-08 ¥
(%) — 10825 + 0-0064, 20"
4 - N
= 1-0889 DAY,
Ay, = 10889 x 0:02/
= 0-0218 ~3%
Finally ¥y = 1:1043af & = 0-10
[Error — 0-0012.]
Enmple.*Conb-lﬁer this same case
dy 5 '
dx 2N+
with the*sﬁme initial point and taking steps of 0-1 in
o _ 1
) d_j ’
~{\ b = (‘E’)o A%y
:..\‘:;' =1x (1
\"\ N/ = (-1, therefore = 11

dy
(a)l = 11 -+ 0-01 = 1-11.
d
Average value of Jg over the first interval from z = 0 to
=01

111 4+ 1
= —2i- = 1-055
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Y = 1085 X 0-1 = 0:1055, 4ir = 1-1055
i -
Yy — 1-1055 01 — 1-
(dx)n 11085 + 0-01 = I-1156.
Corrected average value of %
= IL;JLI = 1:0578
Agirrr == (1058, thus Yy = 1-1058
‘.@) — 1-105 01 — 1. A\
<dx e 1-i058 4 0-01 = 1-1158, A
Second corrected value of {% N
- 4 \'
= LB L 0579 A
Ayry = 0-1058, gy = 1-1058.

The process of correcting the secand” value of y is thus
completed, as no further accuracy*idvpossible by the repeti-
tion of the process. "

In a similar manner for the“intervals up to x = 0-4 the
following results are obtained :

r =01 ¥y ==J-1058 Error = 0-0003
= {2 Youo= 1-2248 Error = 0-0006
@ = 0-3 \%faz' = 1-3608 Error = 0-0010
z=04 XN “y=15170 Error = (-0015.

In eack 0akéithe number of operations performed before
the same yalue is repeated happens to be the same in the
above axatmple.

It ;}11 be seen from the first example that the method is
slow; and that even with small intervals the increasing error

N\t{)\\ifhich the process is subject quickly shows itself. As no

\Provision is made in the method for correcting or checking

values, the method is not very reliable, except over a very
limited range.

The second example illustrates the modified method,
which ig considerably more aecurate than the first, and
attains the possible accuracy much more rapidly. Once
more, however, an increasing error enters, and with a chosen
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N\

N
\¥
) ;

&

Ay =F. 82 + 40, + AT + Hisy 4 2aaf + funf?
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inorement in the argument the accuracy is strictly limited
to that obtained when two successive values of the function

repeat by continuing the process of averaging g% over the
given interval.

In neither case is a check on the accuracy of previously
calculated values of the function provided, nor do they(pro-
vide any scheme of correction once the values are caleulated.

Later methods which follow are designed tu'qie‘et\ these
requirements. Nevertheless, the above methods are avail-

able initially for obtaining a solution over{@“yery narrow
range if necessary. \\

13, The method of Runge.

N . . ~\J/ .
]i_]ulers approximation for the incrdment in 4 corresponding 1o
&n increment z, in z is given by \

X

Ayy = flapyp) Az . . . . . . (1)

in which x,, %, are initial valu®iof the function y and jts argument

x. An immediate unprmtf}lirl@n't in accuracy is effected by writing
Ay = flz +-Jhe, yo + 4f(ze yo) - A2). Az . . (LD)

This expression corpésponds to the Tangent Polygon expression in
the simpler case af\iIntegration of a function and agrees with it
exactly, if f(z,g¥is.a function of only. Apain corresponding to the
chord polygon ression there is the approximation

Ay 5, iiif(% o) + flzo + Az, yo + S, 3o) - A]} . Az (1.2)

W . .

. By eXpinding the true and approximate values of the integral
in power series in Az (see below), it is at once obvious that Euler's
%x;\mssmn I8 in error as to the term in “Az?, and thet the errors of

 §

Mand (1.2} are of order Az3
he true vaiue as far as {Ar)3 is

+ fulh -;—f,f)}.Axs +o.e

?in;l)t.he following are the approximate values from {1.0), (1.1}, and
Ayzf.ﬁz.....-........(1.01)
8y =f. Az 4+ §(f, + f.f)Ax?

F 3+ S + faf . At . L {L1ENV,

Ay =7. Az + §(f, + fof)Au?
FHA + 2 S  faf A .. {L2EN,
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v
Q.
A
/\A\U/V
\\\.v
9/
\\\\,
A4
/N g+ 9% | oy + =
{)
. eouezegp ¥ + ..,V = £V
e s
7 ? eV
LV + W _ day — Ly +
T 5 LY T e
I e W Yot
e=ay (V+Maey+ %) | y+% | ay+ % =29 maw.@.s o ox
wy (A fe)f R x =y Aw..swvm.w _ A J
-7 d\
<,
7 ;
?\\ \
»:“s




 \

N\

\
4

\"v'vhen Z = 0 and that ﬁ?_f: y—-=
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where , .

" 4
f_1 = (%)u; fg = (%)0; fll = (gj‘;)n: fm = %@‘%‘)u; -"[3’-2 = (537{)0
efe,

If the expressions {N,) and (¥,) are combined as in Si}mpson’s
rule, that is, to (& 1) add one third the difference (V) — (N, then
the new value

o8 Uy fuf) A% o 3+ Yol o faaf). Axt L

is obtained. This corresponds to K¢ :\
N1+§(Na_‘N1) or §N1+§-N2' '\’\

The latter expression is correct as far as the term in Ax® end, if f

is independent of > 88 far as the term in Ag?, Iniplace of expres-

sion (1.8) another approximation is taken which reduces to the
chord polygon expression when f is independgn?\of Y, VIZ,

HAY 4 A"y NNY L .. aasn
where Ay = fizg, yo) . Ax Y
Ky =10 Ny, + 8 e
A" = Flmy + Az, yo 4 2%y) . Ag.

NS

When (1.31) is expanded ags & poweE keries in Aw, the result is

T-82 4 M+ 1) 80t 4 3N vy, p oy 5o .
' 2 N L v o

The difference hotweon, (lyx),}s,fnd (&) iz now

Bu + 2foa ) o Ul + fufD . B0 4

and if one third of this' differenco is added to (N} the value
f' Az + é(fl +<&@' Az? + ‘i‘r{fn + 2f12f+f22f2

F+ Solfy ol Ax3 L.

is obtained, which agrees with the tpue

term of thifd dogreo in Ag, The table on p. 97 shows the system-

atic application of these results to an actual case.

value of Ay as far as the

¢4 o
Solution of d_g = flz, ) given the initial point (%o %ok

. .;'mample.——Find the value of ¥ when & = I, given that =1

¥4
The table on P. 89 should be golf -explanatary :

7.31. An extension of Runge’s method,

The following extengion of Runge’s method of integrating the
differential equation &y _

ar =Fx #) is due to Piaggio,
Let ¥ = 5] b0 the initial poing,




09

OVER A LIMITED RANGE

AN
£ 2
YO *§000-0 1021
7 T06%-T =
F i 1000-¢ + 069T-0 + FELET —
Y UMD X ¥ + ... F + A ="t4
A 30605 = sonsrema” T
GEIT0 = L.P P v
e ™ BL600 = m.m x {G8FH1 .wa %, 8ee10={,.F + £}
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Z0RET=.F + 4 £0 = 77 fovieT = _l+a . 0 = TF
= §BI%-0 = 30 X {84911 ‘-0 20 So%a 0% F X (5011300 = P3 70
\\s.l.
/ Lol =
w&o 3100-0 4*.52 0 + =17
FOLL0 = (.7 + .P) SE00,0 u.. SOWBLEIT
FTO=.F . NI
0 x (85% 1 5O =ap " (.p + Ay 4 2)f g i .FJt Z0=1p
%E.o 0= 4p )
FUI X 20 =.F » WA
op " (3] FON = dp  p + Ay + oa i ..C.M & £ '2p ¥ 4 2)f
BO=F =5l % (100~ op (W'D aigi_wwu\i o==1
| &,
_— 4 w\;.
“.. / g
Y 4
L

\V 4
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Sz, ¥} is supposed to be restricted to the range o to @ 4+ A for
and & — h to b + A for , the numerical increment in % being less
than that of @ (See conditions below.) The inequalitiss which
follow are subject to the conditions :—

L. ftz, y), together with its first and second partial derivatives,
are finite and econtinuous in the range.
2, flx, ¥) <1, If this condition is not satisfied as has already

been pointed out, it is usually better to work with g—;. where

% becomes the independent variabie. A ¢
3. Neither ¥ nor & ¢p i N
- Neither =% nor oy changes sign. :\\
Let m and M be two numbers such that N

—1=m < floy) <M< 1,7

If the values of 4 are b J and b 1 I, res"ﬁg\:t-ive}y, when gz is
2 + ik and @ + A, then \

— 3 < dmh <j < JMBL 1R

and —%smh<k<MQ§h
Thus, if %’; i8 <+ ve (f increasing Wn?hx )

S 1 3 b + dmh) < fla + BB+ J) < fla + 3h b+ LMR)

and fta + b, b+ mh) <f@M B, b 4+ k) < fla -+ B, b + M)

white it & 15 _ ve, the inéqu&lity signs in the last two inequalities

are reversed.,

Now =ince %‘m# ve and % ig 4 we

< p<k<q ’
wherex’ 9, P = hfla + Lk, b + Lmh)
PO YAlSla, b)Y + 3fla + 3k, b + M) + fla + b, b + MB)]
S
:?r'}}tle i g}% is + ve and g{—( iz — we

.

2\, Pokag
N\,  where P = hila + 4R, b + L0n)

and g = 3AS(e, b) & 2f(a + 4h, b+ Ymk) + Ha 4 k, b 4 meh)]

- .o
Similarly, if % and % are hoth — we

P<k<Q
T
E.l'ldlfagzls -weandf%is =+ ve

P>k>q
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Thue in every case above k, the increment in y, lies between the
greatest and least of the four mernbers p, P, q, and .
As an approximate {ormula

k= §[Q or g] + }[p or F].

Example. J
where = 0, ¥ = 1 for the range
0=>x 08,
and if M = 1 and m = 0, then O\
G>q>FP>p .'\\“’
Show further that the value of y at = == 0-5 caleulated from'Pi:a’ggio‘s
formula N
EF=2Q + ip "

is more scoursts than that derived from Runge’s fdi';\rlula.
7.4. Kutta’s modification of Runge’s method.’

The method of integrating the equatiqﬁ%% = flz, y) due to Runge
was later developed by Heun and Kubta, but as Heun's work is

contained o that of Kutta, only shelatter’s work will be discussed
here. The methods used by Kutts in obtaining his approximations
will be illustrated by showing\hew his third-order approximations
were obtained. For higherorder approximations the results only
will be quoted, and exafiples given using these approximeations.
Worked sxamples will b\found on p. 107,

)

741, Kutta’s thixd%r;ler approximations.

Using the sathénotation as in the case of Runge's approximation,
Kutte generahed the process by taking

vy, B, ) Ax )
ﬁ*}‘?{“=f(x+m.&m,y+m.9y).ﬁx- ,
Ay = flo + . Az y +p. Ay + (r—p). ). A
With ‘these values for Ay, A"y, and A""y, the increment Ay is
o (Byen by

) 2

yza.A’y—l—b.N’y—}—c.A”’y
m, %, g, a, b, and ¢ are conatants which are o be determined. F'or
convenience in the following analysis, let by, ks ky replace Ay,
Ay, A"y, and let h replace Axt

hen
by =h.f
k‘ - h[f+ m‘h(fl. +fsf) + %mghe(fu + 2fiif +fﬂf2) + . .l

ks = A ] A2 S + fof}
s = M7+ AU AN T iﬁnﬂ{}“{‘{i% gy AT SER
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Therefore
aky + b ky + chs = Bfta + B + &) + Ri(bm 4+ A7, + fuf)
A+ 3mE A AL RS b B e f?)
+ cpmb® . fylfy - LS+
The actual expansion at the point {#, y) can now he compared

with this expression.
Now

Ay =k =h.f+ ¥ 1 fof) | N
I+ 2+ fuf RGPS

That these expressions may be identical s far as thaz\'ﬁﬁrd-order

term, the following equations must be satisfied « \
a+bte=1
bm + ek = % nre. ¢
bm® - ort =3[ " AWM (1.40)
(}pm = % \J
A system of solutions may be represented, By
P = M — m)/m(3£4L3m), )
@ = [BmA — (%) + 2]/6m . A L 141

b =1{(2 — 3n)/bri{m — »)
¢ = (2 — Im)/BH{A — m)

Thus four of the constants gréexpressed in terms of the remaaining
two, and =0 & doubly infinite 86t of values may be deduced.

_The system X = corfesponds to Heun'’s work on this subject,
viz,, o~

A= 3m(l —m) % (2~ 12m 4 97m — 18ms)/18m3l — m)
b= {3m —1 —Cg‘mﬂj&n"; ¢ = {18m3(1 — m}L,
Particular ya}?ses of the above systerns of solutions are :

M= Fphe 0,6 =3, ¢ = 1/(dp), @ — — 140}, . {1.42)
mAKA=ta=141¢= 1;(4?%, b~ i - 1;((4;)}, (L.43)

h=ga=Lb=0¢= .o = 240 1.44)
,{:.S {33m — g);’3(2m ' 1),-§ap= 0 ’(. m) E1.45)

“cases (1.44) and (1.45) two function values only nced be re-

‘tained in the final formula,

e

¢ cannot be zero, and ¢ and b cannot be small together. The final

} formula must contain at least two function values. Each of the

sets above pives a simple infinity of solutions.

Returning to the original notation, the following special cascs
may be quoted : '

mw:"-,)k:-, =
a=£,b=§i
e —— .y
Ay =3CRA 4+ 3A” 4+ 3Ay . . ... (1.5)
wherse A’ = flz, ¥} . Ax }

A, =+ fAn y + 347) . A
A" =flo + fam, y + §a~; vy
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m =4, » == ¢ = ¥; using (1.44} or (L.41)

Ay = HA £ 3A7) . . . . . . . . (L60)
here A= fla, y) ) Az
" A = flo 4 Ax, y + FA') . Ax] {(1.61}
A = fla + #Ax, y + A7) Az
m=F =3 p=1
Ay =HA FIAY . . . . L . L {(LT0)
where A = flx, v}, Ax \
A” == flx + §Ax, y + FA) . Az . (1.91) A ¢
A =Tl + Az, y + LA + A7) . Ax \ O
m=%9)_=1 -'\"’
Ay = A& + 487 + A7) L o o (IS0
where A = fle y) . Az ¢4
A” =7 (@4 tAw, y + $A) . Az },:~}.‘ (1.81}
A =F {w + Ax, y + 2A7 — A9 AeNY

The last formula will be recognised as an&lgggus to Simpson’s
Raie. ny
. N

7.42. Kutla's fourth~order approximations.

Kuite extended the foregoing process 1o the case when the errer
allowable was that of order {Az}. O
T&king N\

A = fla, y). Ax N\
A" = fle - mAz, y + mA) . Az )
N7 =flw + % Az, y $pr A7 + (A — ). A} Az
and (\J '

N\ , ,

A® = flz + pr.,gX G AN 41 A Fp—o—1). A) Az

the required approkimation then becomes
CAy = ad’ 4 BAY + oA £ d. AT
The egaf‘bns determining the constants are then
g

) e
', N

I

b - d=1; com+d{or+ =%
bk ok + ()}!-pc=+%; b ;E ;}‘:‘ + d!;a =i
8T bmE e o dp? = 5 cpmh + dlok 4 T =
AN bmE e iyt =} cgm2+d(u12—}—-:m2}=112-

\'"\Ii dpom = J¢-

here are eight equations for ten unknowns, thus, mk?ﬁig . ?:;imz
as arbitrary, the remainder of the constants are expressible m
of them. Two cases only are given here:

a. Kulta's Simpsor’s rule. o
The simplest formuls with this degree of accuracy is given by
M=i=fu=l,a=d=hb=c=fo=1
y = (A" + 2A” + 247 + AT)




A .
alS
{ Interval Interval Interval
Jp £ =10 Error, & =102 Error = (15 Error.
N to 0:2 to 0-5 tol
(413, [dy1ds. [4w}.
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where A = flz, + $Ax, y, + AZ) . Az
A" = flmy 4+ LAz, gy 4 A7) . Az
AV = flzy + Az, ¥, + A . Aw,
If P={4" + &) :q = HA 4 AW)
then Ay =p + Hg — p). o _
The student should note that when Sz, ¥} iz independent of y
thiz reduces to Simpsen's rule,

b. Kuita's three-cighths rule.

When  mo=j A= § . S
Ay = H{A” + 3A” L A" 4 A \
where AT = flag, y) . Ax AN

A = 3hay 1+ 4AY . Aa O
A™ = flx L Az, ¥+ #3A7 — AL Ax) N
Alv =f(w + Aa:, y + Afl! - Ah‘ + &f) '(’ﬁ'?'
Further information on the work of Kautta wilbbe found in Zeit-
schrift fir Mathematd: wund Physik, Band 46 (190, pp. $35-53.

8, Comparison of accuracy of methods. \
To compare the results obt&ine'g}\\by using some of the

7

previous formule the same example already given as an
illustration of Runge’s method\¥ here solved.

1. By Taylor’s expansion ¢4 the term of fourth orderin Ax.
. Euler’s method (modified).

3. Runge’s methodaiSee example on Runge’s method,
p. 99, ~

4. Heun'’s method. Formula {1.80), (1.61) correct %o the

third~o{éle’r in Ax and necessitating the calculation
of thré function values,

. K“‘étﬁi’fi'% formula. Correct to the fourth order and
ilie}lﬂll‘lng four function values to be ealculatod.

Lheltables below are self explanatory.

[

o

—

Teylor's  ex- —
panaion . 01687 0-0011 0-3384
Eunler  (modi-
fied} . .

00023 | 04037 | 00048

+ + +
0-1708 0-03_30 03468 0-0066 05113 8-0130

+ +
Rungs . .| O-16vg 0-0u+(}1 0-3304 08002 0-4991 GHO003
iy g
Hean . .1 01680 | gogpe 0-3390 | 00004 | 0-4090 0-0507

Eutta - | 0187845 | ¢ . . . T
True value . | Q1prass| TO00003 | 0-380216 | 0-000007 | 0-49829¢ | 0000016

0-33920% 0-448278
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The same approximate formule used over the complete
interval = 1 give the following results, except for Taylor’s
method, where the series is not convergent by z = 1.

Ay. Error.
Buler {modified) . . . 0-6180 +0-1197
Runge . . . . . 0-5238 + 0255
Heun . . . . . 0-516G1 +9-0178
Kutta . . . . . 0-49914 - 000086 |
True valuc . . . . 0-49828 | — 2 AN

Kutta’s fourth-order approximation, as was to be Qx:p‘e‘ét(ed,
thus offers much greater accuracy than any of the third-
order approximations. Here also Heun’s thifd-order ap-

proximation is superior to that of Runge.
. s\
9. Cellected formule for approximate lp@hon.

A" = flay) . Az in all casds\/

1. Runge’s QOriginal Formula : o\
A" = flo + A, y 4 LA
A = flx + A,y + AN Az
A = flw + Az, gy 0R) . Aa

Then Ay = A" 4 HEA F AT — ;5.””} Error of order {Ax}i.
2. Heun : ;«3\
A = flz &A%, y + 38) . Az

AHI ’:f{x.—F Ax, y + %A!)} i Aa:
Ay = i(ﬂ.."-if 3A%),  Error of order (Az}.

3. Kutta‘s; tﬁi}'d—order rule :

ATE fw + 400, y + ) A2
\ﬂ(’:ﬂa:+Asc,y+2A”'—A}-ﬁx "

INVAy = FHN | 4A” + A7), Error of order (Az)*.
4\ Kutta’s three-eighths rule. }S% p. 103, (a) and (b).
“\W¢ Kutta’s Simpson’s rule.

Example.—Apply the methods of

(1) Fuler.

{li} Modificd method of Euler.

(iii) Runge.

{iv) Kutta’s Siropson’z rule

to obtain a tabulated solution of the equation

%: o1y =
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subject to = 0, & = 0 for the range 0 < x <2 -5 at intervals of
01 in 2. Compare the solutions correct to five places of decimals

with that obtained by using Taylor's expansion up to fifth powers
of z.

9.1. Application to simultaneous equations.

In order to illustrate the application of the formulic which
have been developed, to simultaneous equations, Kit#a's
Simpson’s rule has been chosen, and it will be applied b0 a
system of two simultaneous first-order differential eqiuitions.
Extension to other systems may readily be carzied cut by
proceeding along similar lines, RO

Let the equations be R4S

du
d;ng(xa Y, z). N

v/

dz . (€

@ = 9’(“5’,‘?}'{}) |

subject to x = g, y = y,, 2 2\

The procedure is readily winderstood upon inspecting the

scheme set out below,’:fb}' the actnal calculations involve
simple substitutions enly.
Writing PAN

A = f(xo,%"zo) Az
A" = f@y+ bAz, gy + LA, 2, + 15) . A
A = @2y -+ 1A, yo 1 JA", 2, + 137) . Aw
A‘f’tx’T—w'f[x,, + Aw, gy + A, 2y + 87 . Ax
and ()"
O = 9o, Yo, 25) . Az
8" = glx, + 3Az, y, + A, 2y + 38°) . Ax
8" = glwy -+ $Az, yo ++ IA”, 2, 1- 15} . A
87 = g{xs + Az, Yo+ A, 2y +- &) . Az
From these

Ay = (A" 4 247 4 2A™ 4 A
Az — %(8, + 28” + 28!!! + 81‘,).

The successive increments may be obtained in a similar
manner, or the solution continued by the method of finite
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differences when sufficient values of y and z are obtained
o start the process.

Example.— Kutta's Simpson’s rule applied to two simul-
taneous differential equations of the first order.
Consider the differential equation

Ay | g% _ A
dar T W =0 N
o\
subject to z = 0,y = 1, d%: 0-1. o\ N
This equation may be written as the equivalent'gygtém of
first-order equations R4
il = By — 3le '
dx RN
dy A
; 2 ‘ ’\

subject tox = 0,y = 1, 2 = -1, I
Following the scheme set outlon the previous page
dy R\ 2
fo s B ) Y dx Gy X2,
Initial conditions g<=0, y = 1, z = 0-1. Let the range
be divided into eqhdl tntervals of 0-1 in x so that Az = O-L.

Using Kutta’s'Simpson’s rule

A =01 %ot = (-01
A" = (0P 0-3) X 01 — 0-04
A" = (BT + 0-2985) x 01 — 0-03985
AF EN0-70602) X 0-1 = 0-07060
AN (5 X 1 —0) X 01 = 06
NS = [6(1-005) — 3 x 0-05 x 0-4] X 0-1 = 0591

"8 — [6(1-020) — 3 x 0-05 X 0-3985] x 0-1 = 0-60602
3 =< [6(1-03085) — 3 x 0-1 X 0-70602] X 0-1 = 0-60273
Ay == LA 4 2A7 4 247" 4 AY)
= 1(0-01 -+ 0-08 + 0-07970 + 0-07060)
= 0-04005 '
yl = yl) + Ayl
¥y = 1-04005
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Azy = }(§' 4 25" 4 25" 4 §iv)

= 0-60148
2, =24+ Az,
2y = 0-70146
In precisely the same way the succeeding valies may be
obtained for y and 2. 2\

10, A method of correcting the approximate initial{ values of
y and g_g S
The following is a stmple but rapid p\rc:i;es;;, of checking
and correcting the initial values of g and
of the preceding methods. ANV
Let the initial values of i anﬁs d% be denoted by ya, %1,

y?.! ya.- y&l: Q’m 9'1, gg, 93, a.l’ld; q;.’".
NOW N :"
el \

Yo% = k‘_l; . ¢{a +k3 . dr (¢, = gle + #h}]

dy found by ons
i

r=1 1
=1 oo+ rdag + firte — vy,

G + 3170 — Dr — DA%, + . .-

\& 1 1 1 1
xt\’...‘“' k[q'i + 3 Agy — 12 A%, + 94 Algy — 10 A Q’o:’
'"\\~
N Error % Ay

W\ Correction Process.

- \ ¥
"\\ N/
4

L. Using the formula last found for y, — y,, correct y, to
{#1)1 and substitute (#1), in the differential equation, thus
obtaining a corrected value of ¢,, say, {g,);.

2. Simpson’s rule is now applied to correct g,.

1
Thus (¥2); = Yo +- gh[gﬂ + Hg1)y + ¢o]

1 h
=Y+ A _2(9'1)1 + ] (A29'n)1} Error 90 A
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From this value of (y,); the corrected value (g,), is obtained.
Clearly, if 12{(g.); — 9] affects the accuracy required in g,
this quantity should be added to (y,)}; as a correction, and
(¢,), should also be calculated before proceeding. _

3. The process described in (2) is repeated for the remain-
ing values w, and y, so that a complete set of corrected
values of  and ¢ are available. These values should them-
selves be corrected as above, if upon applying Simpson’s,
rule to checking, say, (ys); — (#1)1, the eorrection neees~)
sitated in (y;), affects the required accuraey in ¢. This
will only be necessary when the initial values are of a‘com-
paratively low degree of accuracy, such ag may pégult from
using Euler’s process. An example is now giveh showing
the application of the above method. O

2>
Exaraple.—On p. 94 the differential squation
dy g s (=0
dp— ¥+ sublectlo, )

is integrated by the modiﬁed‘pi{)b&ess of Buler, using intervals
of 0-1in & The results aré'given below, and the difference
table of the ¢’s is formed:

L )

¢ \\
x. gy =% A. Al A3 Al
® .“;'" dw'
Y -
0 I 11
\& i 1158
01 ANS-1058 | 1-1188 332
N\ 1480 36
0231 12248 | 1-2648 368 2
N i 1858 a8
PN 3 1-3606 ¢ 1-4506 406
/ 2264
04 - 1-51%0 \ 1-6770
U'sin.g

(?;‘1)1 — Yo = hlg, + $Aq, — T%Azgn + 2% — Lo\l
{41 — 9 = 0-10553
Wi — 1-10553 and therefore (g,), = 1-11553.
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Again,

e = + g, + Hq1)y + o] =y + h{2{g,), + 1A%,
(#2)1 = 1-22423 and (g,), = 1-26423.

Bug
{Ya)e = (w2} + (g} — ¢2)

= — 000002 .
therefore O
{#a)s = 1-22421 and (g,), — 1-26421. o\ e

N/

These corrected values of the y's and~.§’s;‘~ are used in
determining y, and y,, and it is found\ 1tBat’ the values of y
and g finally obtained using one eorrebtion only are all
correct to the fourth decimal placq;\\JGrea.ter accuracy may

; p¥7 .. h
be obtained by the process up So\the point at which g Aly
can no longer be neglected.
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FORWARD INTEGRATION OF FIRST-ORDER

EQUATIONS
11. Forward integration a
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11.2. Magonitude of increment in 2. P\
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12.01. Mzrrop LI. A method of successive appréximwtion.

12.02. Mezumon III. A new method of forward i{ltegration.

12.03. METHOD 1V. K7, .

12.1. Mrroop V. Alternative methods notrequiring a difference
teble. N\

12,11, MmTron VI : {

12.12, MeTHOD VIL Y

12.2. Coiwcparison of the methods. O

11, Forward integration of “ﬁréééo}der equations.

When the methods, described in Chapter 1 become too
laborious over a t@e’ range of integration, for reasons
already discussedy. it* becomes necessary to devise methods
which will enable~an integration which is begun by one of
the methods ¢hChapter I1I to be continned with a reasonable
amount of (labour. These methods should maintain a
specified\degree of accuracy, and provide systematic check-
ing ar‘;fi correcting processes. When a number of values of
B eoittinuous function having continuous derivatives over a
\tcmai’ﬂ range have been determined, then, upon the assump-

lon that a polynomial function of x (the independent vari-

able) ean be found to represent this function over the given

range, this polynomial may be used to ext}'apolate a

value a little beyond the given range. ‘When this approxi-

mate function value has been extrapolated, then 1t may
111
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be used to enable more accurate estimates of the funetion

value to be made by using the differential equation in the
sequence form

@) = tte.
in which ¥» is the approximate extrapolated value.

Such is the basis of the methods used in the present
chapter. The convergence of the above sequenee,'ts dis-
cussed in the general case o P. 38, AN\

€ methods to he described in thig section \rclude those
already described in the last section ag an{essential part of
the complete process of integration, THe processes bave

Attention ig drawn to tllje.f(_;aﬂowing important considera-

tions which critically affeet the successful application of
these metheds, NP

to a Tmber of significant figures, then two more figures
When the range is not

requi@i’ may be retained. Since in the integrations the
~ 4 7 s
\:”\luﬁes of ng and t% used in determining ¥ are multiplied

of the entries in these

11.2, The magnitude of the increment in x

Gf’néml eXperience has shown that it is better to keep
the increment in 4 small, and thys simplify the formulse of
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integration, than to use more elaborate formulse with larger
increments. The accuracy of difference formule for the
inerement in y corresponding to a given inerement in @
increases rapidly as the increment in z is diminished, and
when proeesses of successive approximation are used this
usuelly means that the utmost accuracy is obtained from
the formulee in a small number of steps. The rapid
convergence of the successive approximations is very effec-
tive in redncing the amount of labour, and is therefore ‘ef
consid erakble importance. o\

N

.
77
| 3 %

11.3, Checking processes. < 2

No method of integrating a differentiakequation is com-
plete unless at each stage of the integration the calculations
invalve a process of checking whjchs'éﬂows the integration
tb be carried on with absolute copfidence in the correctness
of the previous calculations. 3 N/

Where 1o check is provideddn' the systematic integration,
a check should be devisedi™ Herein lies a great advantage
possessed. by difference miethods.

The regular way, {i which differences of higher orders
change during a @tégration is of extreme value in checking
the accuracy Qliicalculations. An irregularity in higher
differences_indicates the presence of an error almost unfail-
ingly, and/the stage at which the error entered the calcula-
tions. T0 see the way in which an error introduced into

the ﬁum of y's affects the difference table, examine the

table below :—
.‘\':.
N aD A &2 As A" . Aﬁ

€

€
. € + — be

— 4e¢
ay L e € 'y + 10¢
fag + ¢ — 2e + 6« 10
—_ 3¢ 4 - £
e + o — e o 4 be

tg 4+ €
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Only the error term itself is entered in the table, from
which it is seen that the error in the table oscillates more
violently as it passes into the higher difference terms and
is greatest along the central difference terms through the
entry which is in error. In many cases it is worth while
caloulating higher differences when not reguired for the
actual integration, solely as a check. Processes of suades-
sive approximation are also of great value in ',(:h@cking
Previous calculations, for the corrections, espe,{si&flly the
small corrections, usually change very slowly,qantl a slight
irregularity is at once detected. The conyvergence of the
successive approximations should he artdgnged to be as
rapid as possible by altering the ingrémlent in , and in
this way calculations which would cherwise be nscessary
as a check become part of the ac{{Jé} process of integration.

11.4. Estimation of the total error.over the range of integration.

The estimation of the total error over a range of integra-
tion is naturally of the \greatest importance, and in some
of the examples this hasibeen done to indicate the accuracy
to be expected of guch an estimate, The method adopted
is to take the fixst “error term and sum this up over the
range of integdation. This estimate should be doubled at
least, as a%ga; ty-first precaution, and as the integration
proceeds igwalue can be re-estimated with greater aceuracy
and the iérement in z decreased if there is any possibility
of ﬁl;i,g‘}équired aceuracy not being maintained in the final
v@\lfges of y.

L 115, Changing the increment in .

S

When the increment in % decreases during an integration
the accuracy may be maintained with a larger increment in
@, and if the increment in ¥ Increases, it may be necessary
to decrease the Increment in x to maintain the same degree
of accuracy. For purposes of decreasing or increasing the

increment in x it has been found necessary to use the inter-
polation formula

% = gy + q) — Te(A%, + A%) + 54, (A%_y + Algs)-
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The provess of adding interpolated values between pairs
of ¥mown values must be carried out with accuracy at least
equal to that of the entries used for the purpose. When
the interval is to be reduced, halving the interval is usually
enough, although balving again may be carried out if neces-
sary. For increasing the interval, no interpolation is needed
for doubling the interval, and inserting an interpolated
value after every two entries enables 23 times the interval
to be used, : O\

"N

11.6. Starting the integration. Ny

7

The methods of starting the integration tyhifh' have
already been described are available. The numberof values
caloulated in this way varies between three and five, accord-
ing to the method of forward integration adopted. In
general, it is better to start the ntegration with a reserve
of accuracy, and this may mean using an inerement in x
for the first few values, smaller phan it is necessary to use
in the subsequent forward intggration.

The methods of increasiip® the size of the increment
described in the last pagagraph find an important applica-
tion at this stage of the integration. Tt one of the methods
of integration is Keii’Which requires only three function
values to allow $heMorward integration to be begun, these
initial values must be found to the final specified aceuracy.
Where five iflitial values are required, these can be corrected
to the defitied accuracy by processes to be described, and
theref ‘1‘@~'tt-heir initial values need not attain the final
accuraey desired.

N 3
{20, Meraop 1. Integration of differential equations of the
first-order by the method of Bashforth and Adams.

_ Let the differential equation to be integrated be written
In the form

{%ng(x,y). A 0}

subject to the condition that when & =% ¥ = Yo Llet
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(%, ) in the first instance be a point in the neighbourhood
of {xy, #,), then it is known that a solution of the above
equation may be expressed in the form

Y= Y= (@x— xu)(g‘_Z)o + % (x — on(i_;yg)u

3,
—1—3%(&:—%)3(%%)0-{-. N I 4

N
N

where the differential coefficients are calculated &b {2, Uo).
In the immediate neighbourhood of (2, ¥,) the Sxpansion
(1.1} will in general be convergent, but as zy> #, increases
the rapidity of convergence decreases, and\thore and more
terms in this expansion will be required t0"maintain a given
accuracy in the solution. Let us suppose that the accuracy
of the required solution is definitély’ specified in advance,
e.g., a solution may be required 07 decimal places, Further,
suppose an expansion (1.1) hasvbeen found, carried just far
encugh for the labour in the computation to be bearable.
From an examination ‘offiahe magnitude of the final term
uged in this expansiorit is possible to specify the range of
z beyond «, for which this expansion provides a solution
within the degred of accuracy required. Suppose this range
be subdivided Xgo that z,, — %y + 4k, where A is the step
to be taken in #, thus dividing the range into four equal
steps. O
By sealculation at the points %o+ h, wy + 2h, x, -+ 3h,
Fot#¥ In equation (1.1) the values Yo Ya, Ys and gy, are
determined, and thus we may sayy that the equation has been
~Jotegrated over this small region. The Adams—-Bashforth
~(0 method proposes to estimate the next value of ¥ by extra-
polation. This is done in the following manner.

d
The values of 7 a%(: g) at the points =z, z,, etc., are

available, and can be caleulated by substituting (v %a)-
(@, #1), ete., in equation (1}, thus giving g,, G G20 T3

;,nd % With the usual notation of finite differences we
ave
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E—A=1
Br = [E[{E — AT = [(E — A)/E]
—[1 — AE-1~

Now Eq, = ¢quyr
thus Goyr=[1— AE" " . g,
Apain
[l AE-Y =1 4 rAE"1 4 o r(r+1)A2 E2 4,
therefore
Gotr=qn T+ rAG_1 + 2—1~,*r(r+ DA% go_s+ - gf\/’\

F 4 ’~‘
where r is any numher "N\ 4

Now Yu 11 — % = 4% + {0+ DAY — (% + ﬂJkJ\‘
T, + (= 4+ b

dy
—_ &a‘:.dx \t

T, + Rh \\
Fo + {0+ 1R

— p-1 J g(m).dw:'{:‘}; >

Ty - 1B \"n.;

If we change the variable in~ t,'hls integral from x to 7, such
that

r =2 ﬁ:’(,n—}—r).h
dx:h[{\}b"

Then y, +1—'%Wh fﬂ’ﬂ“ hdr, [g"“ h(%)xd(n—i-')”]

\;‘7 Fn+r - dr

\ 1)
.‘\. _'fd?"[gﬁ—i-?'ﬁq'n—l‘i_ (21 aﬁqﬂ g+ ]
~O
Vﬂhe numbers ¢,, Agn_1, otc., are independent of 7, and
tonsequently

y"+1_yn—'g'n+%AQn 1+ & AZQn 2+BAQu 3
+2-%‘.!"a4q” 4+ + . (1 3)

Thiﬂ formula, can be uﬁe‘d to Obtaln yﬂ+1 lf ym Qm 13% -1 leltlc »
ate determined, Tt will be shown presently how. theee
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latter quantities may be systematically caleulated.  Apply-
ing the result (1.3} to the case which is being comsidered

Ys — Ya = gu + 1A% + 2 A% + §0% + 1A+ (14)
In the present circumstances the last term on the right-hand
side is the last term available from the values alveady cal-
culated. The error introduced by breaking cff at (this
fourth difference is of the order 1A%, which can if neces-
sary easily be estimated. y; is obtained by usingr\’ seiation
(1.4}, and by substituting in the differential eqiadion, g5 is
found, and hence the next step to y can b made. FPro-
ceeding in this way, succeeding values of ggma}-' be found.
The accuracy will, of course, tend to dithifish as the number
of steps increases. \

The following table indicates th’c\\method of tabulating
the results and forming the required coefficients.

Ty Yo G "
A
&y 1 91 ) Alg,
LN Agy A%,
Ty ! N Atg, Atgy
® 8 Agy Adgy
3 ¥s . s APy,
x4 ‘\ Agy
Ty Yy \\ g,
Tg . #sy by extrapalation.
Example- et
9.\ y
'"\'\~ x - —
de— TTY

N

. }E’e the_ d.iﬁerential equation. (iven that when z =2,
(V¥ =2, 1t is required to find a solution of the eguation in

the range of 2 £ = £ 25, to four places of decimals.
Let the region be divided into ten equal parts :

xo: xu —I" h, P xn + 10.?6
Then Xy = 2
k= 0-05.

The values of y corresponding to z equal to 2, 2:05, 2-1,
215, 2-2, . . . 25 are required.




FIRST-ORDER EQUATIONS 119
Expanding y in the neighbourhood of x = 2
y=9 & — 2y + 2—1. (e —2)%. 9" + 3%(% — 20" +
where ¥,. ¥, etc., are the values of y, %, etc., at x = 2.

yo =@ — ¥)j2lecwzy-n=0
¥ o=y — ') = @y — et g =3

y" = @22y — 1) — 2y — x) . 2x}/2! \ -
= 30 — )i, p = -3
" = — 12(r — 29/, - v =4
y" = 60(x — 2y)/z%, Yol — 3
Y= — 360(z — 2y)/at m&
Thus

AN\
¥ =go -+ (2. 0 4 Ho —2)P — Ja LR + (e — 2 +
—'31?{1"—_215* e e e {a}
From series (a) it is requiregia.’tgp”ﬁnd Yoo Yoo Yo Y, and Yy
and therefore the greatest nutnerical value of the term

— A{x — 2 A& #:(0-2)° = — 0-00001
and of - {x — 2)¥\is + #{0-2)¢ = + 0-000001.

Since the terms jn@§hé series are alternately positive and
hegative, it follows'that the values of % from series {a) will
be correct to the fifth decimal place.

The valuggfef y calculated in this way are 3, = 2-00061,
Yo = 200248, y, = 2-00523, y, = 2:00909.

FTO{Q}He differential equation

‘.". = = - :E
“\ oy =g= k(l x)
~O g, = 0-05{1 — (/. }}
O liting this equats

sing this equation

Yo=2 7y == 0-00000 4 00120
Ve = BOUOGL gy = 000120 T O sy, — 0-0000% _ 4 00001
— 000112 fo = T
¥s = 200238 ¢, = (00232 Az = 000 dg, = — 000007 fofe =~ 0o

Agy = 0-00103 4%, = ~ (00001
2

¥ = 200528 ¢, = 0-00337 42, = — 0-00008

Ay = 0-DO0%T dlge -+ 000002
¥a = 200808 g, = 0-00484 o A7, = — 000006
dg, = 0-00081

gy = 0-00525
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From the above table it is clear that the second differences
of ¢ are nearly constant, and therefore the third and fourth
differences should be taken as zerco to the fifth decimal place.

Now

Yos1— ¥n = @u + 301 + oD% 2 'Wq»—-
+ £ ‘5 @1+ ~
Ys = Yo+ da + §8¢ + 1A% | Nqi

‘+' ""a [ 4’1‘0\‘1"
== 2.00909 4 0-00434 4- 1(0-00097) -3 t\A{} 00008)

= 2-00909
0-00434 “
0-000485 '»sz\\’

2:013915 O
0-000033

= 2-01388 '
This now enables us to ~0’a‘"[0ulate
g5 = 0-05[1 — g1 ]
= 0-05[1 =~ 201388[2-25]
= 0 0 525

% ¥ + 3Aq, + 5A%s + . .
1388 4 000525 4 0-000455 - (— §-000025)

) 0:00525
:U‘\} 0-00043
Y =2.01956
R %roeeedmg as above, the following table shows the final
results.
3 9.&1 = 0'00434
¥} Error Ag, = 0-00091
¥ = 201388  — 0-00001 g = 0-00325 AZg, — — 0-00008
Agy = 0-00085
¥s = 201956 — 0:00001 g, = 0-00610 AZg, — — 0-00006
Agg = 0-00079
¥r = 2:02606 — 000001 ¢, — 0-00689 Arg, = — (-(0004
- Agy = 0-00075
Yo = 203332 — 0-00001 ¢ — 0-00764 Algy = — 0-00005
Agy = 0-00070
Yo = 204132 — 0-00001 g, = 0-00854

¥y = 2:0499%  — 0-00001
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The constancy of the error indicates that the method
maintains the accuracy of the value of  at which the Adams~
Rashforth method was applied. Greater accuracy may be
obtained by taking the first calculations for %o Y ¥Yan €00,
to a higher degree of aceuracy, and if the second differences
ate 1ot constant to this accuracy, the terms with the higher
differences should be taken into account.

The complete solution of the equation

dy Ke
xtﬁ = —Y 8 \ ¥
where z = 2 when ¥ = 2 is ) N
z 2 R4
) :§+5¢- $
When z = 2:5 y = 2-05 o\

- which compares with ¥ = 2-04999. \

Checking the integration. N

The ahove process is the.;bﬁmplete Adams-Bashforth
process. Checking the proces'is only possible by repetition
of caleulations or by dege"nding upon the regularity of the
fourth difierence colupiy® An added check, however, which
is applied in meth dghabout to be described is to use the
formula Ke

Yo = Yn—a ?’\?‘Qn — A1 — TeA 2 — 7 B nl—‘?&‘q :
el — 38 % —4

Y
to Ch?c.ﬁ\xyn _ before proceeding to the evaluation of #a +1.
Theserror term in this formula may be taken as

\ ) k 5, h 4,
—35%_5 +?'2_0A%1—-4-
to obtain the solutions

Examples. 17 _ h method
p! TUse the Adams-Bashforth me o equa.tions for tho

correct to four decimal places of the follow
ranges indicated 1
1-%=xhy range 0 < ¢ < 0-25.

x_j_y,where:v:{),y-—.—-l;
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d 2 2
2, Ei:%j:%,whcrex:ﬂ,y: U; ra,nge[) < 2 < 05,
3.%=$2+y2_1’whemxzo’y:0; range 0 < g < 02
dy o,y _ ok ) -
4.@—§+é,wherex_1,y_{)5, range I < z < 1.5,

12.01. MeTHOD II. A method of successive approximation by
finite differences using initial values found by the
meodified method of Euler, ¢(\H

It has been shown that any function and itis&lerivatives
continuous over a certain range may be( #pproximately
represented over that range by polynm[{&l' functions of its
argument. The formula we proposé(te’ consider is that
corresponding to Newton’s backward\formula. Thus, if ¢,
represent the derivative of the fpn@tiona.l argument, then

L

1 £
%= = Go + *Ag_, + 21 2@ + WAy _,

1 e
+ 304 + e+ 2)0%_; 4 ... (1)
in which ™

NS

&= (d—g‘%)a +:zﬁ§

The increﬁi@eﬁi} in ¥ over the range x =0 to x =1 is
given by A\
<

[ qudten)
O LR,
s °

N/ 1
{ yI:qu.d(xh)

WS

_ 1 x|
= k[qox -+ Qxﬁ CAg, +- 57 (—% + —2->A-g_z
24
g+ o + o) A
1/25 3 11 T
+5+ 2t gt A x Ay, 4
= Mo + $Aq., + 5,08, 4 §A%_,
THIL ) L L @)

0




FIRST-ORDER EQUATIONS 123
Similarly

Ay_y = hlgy — 38g_1 — A%, — 5%
— Al — . ) . . (2])

First error term is 1AA%_g.

Ay.o = hly, — 3Aq.; + F:0% 2 + F50% 5
A A ) (22) 0
2\ AN
My_g = hlg, — $0q_, + A%, — §A%, A\
— ANy — ) . @23
Ay, = hlgo — 1Aq 5 + 3A%_, — §1A% s, i
+ N ) (4]
In which O )
—r—1) " x';’\ »
Ay_, = | qd(xh). O
Similarly N

»

[ acdtah) = Hiog, + y(A%g 5k gy + A+ ] 2D)

2

L] .m’\ ‘
]—g"d(ﬂ?ﬁ) == 2hfg, i’\ﬁg—l + 1A%y — rhediog. -] (26)

The formulae’*li'j to (2-6) are expressed in differences of
the derivat&é;\o’f values of the function that proceed back-
wards, thugfequiring only previously calculated derivatives
for thBQ\'ﬁétermination. .

Formule (2) and (2.5) are used for integrating ahead,

_While the remainder are valuable as checlk formulze; especi-
ally is this so with formula (2.1), which checks the integra-
tion ahead effected by formula (2), and formula (2.6}, which
checks two consecutive intervals, The formul (2.2),‘{?.?),
and (2.4) are in general used only for checking the ]Il‘.lt.lEiL].
values calculated before integration by finite differences 18
beguﬂ.

An example already examined will be continued by the
above method,



124 FORWARD INTEGRATION OF

Example—In the example P. 94 the following results
are obtained ;—

x. Y- . Ag. | Alg, | Aty ‘ Mg,

0 i 1 ‘ | ‘
0-1158 -

01 | 11058 | 1-1158 332i O
0-1480 Ioa6 L

02 | 12248 | 1.264% 368 | AN 2
0-1858 ‘ 8 [
03 | 1-3606 | 1.4505 106 | |
0'2264 (}"«}. i
04 | 155170 | 16770 >k ‘
{ &/ i

_—“—"——‘———_—#—n_‘—

Using formula (2.4)

Ay_, = 0:1[1-6770 — 3 x 0.2264 ANSE X 0-0406
— %'\x 0-0038 + 252 x 0-0002]
= 0-1055

Using formula (2.3) o\

N

Ne/

£

Ay. 3_01[16770——}; >‘<02264+ $ X 0-0406

N\ —3 % 0 0038 — A X 0-0002]
= 0-1187

Usmg formulg ¢ (2:2)

Ay. 2=01[ﬁ\?$770~3 X 02264 - 8 X 0:0406

4 % X 0-0038 + AL % 0:0002]
~011354 = T

Ugj{ag\formula (2.1)

Qg»_l = 0-1[1-677) - 3 X 02264 — 1 p. 0406

X 0 0038 — % 0-0002]
= 01560, T 7

The corrected values of % are therefore

0 g Aq. A%g. j Asg. J Aty
1 1
1-1055 11155 1155
1.2242 1-2642 1487 332
1-3596 1-4492 1854 267 35
1:5156 16756 2269 406 39 4
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When these values are again checked by the previous
process, all are found correct except the last value, which
corresponds to an increment of 0-1559 instead of 0-1560.
Making this change, the table is now ready to be angmented
by integrating ahead using formula (2). The values are
inserted in the table correct to four decimal places, but it
is advisable to keep five decimal places, in order that there
shall be no doubt about the fourth place.

)

Estimate of toial error. O

Taking the first error term as gAﬁq_s,* the tgtéf*.error

estimated after the first integration ahead ;sfcfearly too
small to affect the accuracy required. ’

Y,
P i I q. Ag. N B‘%ﬁ Adg. | Alg.
04 | 15155 | 1.6755 | 2269 . 405 38 3
0-5 16082 | 1-0462 | 270M | 448 43 5
0-6 i-G064 | 22664 | 2202 495 47 4
07 | 21513 | 26413 (8749 547 52 5
08 | 2:4308 | 307664353 804 57 5
05 2-7688 35788 5022 669 65 8
10 | 31548 | 41648 | 5760 738 69 4
O

N
By formula (2) O\
Ay, = 0118755 + } x 0-2259 4 5 X 0-0405
.'\’:.\ 4+ 3 % 00038 -+ $3% X 0-0003]
:—:—,\\Q-lSOGS.
Th\é Mew value of y; viz. ¥, i8 nOw calculated by adding
~0:IB06S 1o y,, and the new line of differences is constructed

for g, having first determined ¢; from the differential
equation.

Thus g, — y, + @, = 1-6962 - 025 = 1:9462.

* There is also a term + %A‘q_ 4 but in general this is much

smaller than the term guoted.
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Using formula (2.1) to check %;

Ay, = 0-1[1-9462 — 0-013535 — 0-000373 — 0-000018
— (-000001]
= 0-18069 as compared with 0-18068.

There is therefore no correction necessary to g. FPro-
ceeding in the above manner, the table is completed up 4o,
2 =1. To check the accuracy of the last increment

AN
Ay = 0-1 [4158 — } x 0-5760 — &, X 0-0738 ()
— 2 X 00069 — < 0-0004]

\

— {36804 as conmpared with 0-36803.

N\

This is confirmation that the processiS,Jnaintaining the
necessary accuracy. The value 3-1548%of y when x == lis
correct to the fourth decimal placeo\‘ >
12.02. Murzop TIL  Complete inbegration of the differential

equatmnﬁx = f(x fy) given initial values of = and ¥.

(a) Beginning the solutwn o_f Y fle, 4} using Kutla’s

Simpson’s mle\\‘Lét five initial values of ¥ and q(-” Z—Zﬂ) be

obtained by(Integrating four times using Kutta’s Simpson’s
rule. Thitmeans caleulating the following functions,

\" A = flz, y) . Ax

s \
N A = flz + fAz, y + 1) . Ax

R\ N = flo + $Am, y + $A7) . Az
\ AW =f($ + ASL‘, Y + A”") . Ax,

L 3

V ~ and substituiing in the equation
(Ay) = A" + 2A" 4+ 20 + AW,

In this manner five initial values of y are derived, for
which the error is at most of the order #5. There remains

only the fifth value of q(: %) to be caleulated to complete

the five corresponding values of ¢, the previous four being




FIRST-ORDER EQUATIONS 127

already known. Now a very easily applied formula (see
. 108) may be used to ¢heck Ay, for
(Agy) = Bl(fo + 28f0 — 138%0 + 2:8%, — WwAYa)-

a
720
sidered as correct to terms including fourth differences.
Having ehecked and corrected g, and g,, the remainder of

the values may be corrected by applying the formula )
¢
Yn = Yn-2 + %h(Q‘ﬂ—E + 4%1—1 + QH) N\ ©
= ¥Yu-z + h(ggn—-l + %Azgn-ﬁ) \ -y

~

This formula is A%, in error, so that it may be con-

: L LN
to successive overlapping intervals of 2k, This/fermula is
in error \\

h 4 5
QO[A Ga-2 — A gﬂ-2] x'\\:

and may he taken in practice as correa‘b %o fifth differences.
The value of y; may be checked o setond time, if the first
correction was found to be suffielent to affect the accuracy
required, and, if necessary,\phe above process repeated.
Five initial corresponding ;"v'a;lues of y and ¢ are now
determined, and the pfocess of forward integration may
be continued as deqqribcd in the following example.

It may be noted that go, %, - - - ¥a in this example are
all correct to @x decimal places. Hence, although the
checking of #He initial values is essential, no corrections
were found 46 be necessary in this ocase. In general, the
accuracy “obtainable with Kutta’s formula is much greater
than j&}; be deduced from the statement that the error 1s

of rder 25 at most. .
~ b)) Forward integration. A mew method. The following
N Aitference mothod of continuing the integration of the
differential equation

j_g:‘f(x’ y)

has been designed to secure a minimum of labour for the
high degree of accuracy which it achi_eves. The check
which it provides in the calculations Tequires the use of one
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previously caleulated quantity, and one other which is
itself necessary for a subsequent step in the integration. It
will be assumed that the early stage of the integration has
been begun by one of the methods already outlined, and
that this is of such accuracy as to involve fourth differences.
Let the five corresponding values of y and ¢ thus supposed
known be ~
Yoo Yo Yo ¥as Ya " 9o Ty T25 92 Qs
Consider the formula O\

(Wsh = s + b 120, + $0%: + Ag,) . O7(3)
If this expression is expanded in ¢, and its drﬂfe‘rences, it

will be found to err in excess by R
k 31k N4 .
59 4% — 5¢ - Adggant. . (B1)

It follows, therefore, that this fornfuls will probably yield
results in general correct to fourth’ differences. Should it
be suspected that the term in\fifth differences may have a
greater importance than the term in fourth differences, the
effect can be at once estiﬂiatéd by evaluating

(¥s)e = ys -+ hl2g, + 3A%,). . . (3.2)
This formula errs @,\excess by
K

goldies — 8] . . . . (39)

The diffeTenice (y;), — (y;), is therefore a good measure of
the te(ﬁ m fifsh differences in (3.1). In (3.1) the terms
willMn/general counteract each other g effect, but if either
bebomes sufficiently large to influence appreciably the

\accuraey required, then the interval 2 must be reduced.
“In this reduction of the magnitude of % finite differences

provide a very convenient and rapid method. Thus, to
interpolate a value of ¢ between two values of ¢, and gy,
say—

g = %(‘Io + QI) - TIE(AEQO + qu—;l) + y%v(&“q-l “|‘ A‘Q—z) + e
If the precautions indicated in the above account are taken,
the required aceuracy will be achieved without the rather
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tedious process of successive approximation. In the follow-
ing problem the method is quite severely tested, and the
results demonstrate the high degree of aceuraey which the
formula provides.

Example.—Integral of %: =y + 2% fromz = 0to 2 = 2,
at intervals of 0-1, with the initial conditionz = 0, y=1. The
differenice table is a horizontal table, and the starred terms

——
Y. : 2q. g A, Az PN
1 ! ] AN
1105515 1-1156513 115,513 , \
1-22430¢ 1:264209 148,696 33,183>
JNTT,08I
1:359577 1-449577 185,368y, /v 36,672 3,489
o 12,22
1515475 | 3-350950 1-875475 225;§98 40,530 3,858 *
' AN 13,510 o
1-896164 ©  3-852328 1-946184 | 950,889 44,791 4,261
14,930
1906356 | 4-532712 | 2.266356\ % 320,102 [ 49,503 | 4712
&Y 16,501
2151267 | 5282514 | 2-641867 374,961 53,329 5,206
N 18,236
2-436621 | 6153242 | 2G076621 435,364 | 60,483 | 5,754
AN 20,154
2768807 | 7157614 ) 3.578807 | 502,187 | 66,823 | 6,360
i 22,274
3:164842 ! 8.308684 | 4154842 576,035 gi,gig 7,028
3602493 | NOBb4ose | 4812493 | 657,651 BLle | 7,768
4120345/ D11120600 | 5560345 | 747,852 ggigg; 8,685
LTIABRY | 12.815784 | 6407882 | 847537 00685 | 9,484
33,228
5405590 | 14731180 | 7-365500 | 957,708 | 110,171 | 10,486
N 34,724
<\ 8196055 | 16-800110 | 8-446055 | 1,079,465 l%,;gg 11,586
7090082 | 19-318184 | 9-650082 | 1,214,027 | 134,003 12,805
8131824 | 22.043648 | 11-021624 | 1,362,742 | 148710 14,153
9:308021 | 26-097842 | 12-548021 | 1,527,097 | 184,355 16,640
10647658 | 98-515316 | 14-257658 | 1,708,787 | 181,640 | 17,280
12-167138 16167138 | 1,909,480 | 200,743 | 19,103
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show the two difference terms to be taken together, and each
second difference term is divided by 3 in the table. Any
integration may be very rapidly checked by formula (3.2),
before continuing the integration, in which c¢ase the check
provides the second difference term two integrations ahead.

The final value 12-167138 should be 12-167167, whence
the error at this stage is found to be 0-000029 in deficiengy.
This shows that the fifth differences have actually, miste
than counterbalanced the fourth difference termq m\thc
expression (3.1). It will be seen that towards thc ond of
the calculation the error term reaches a valug® of 0-000003
in deficiency. Just how long this error uidy" be allowed
to continue without d!mlmshlng the 1ntert‘f’a\u1 depends upon
the accuracy reqmred in the subsequenfNintegration.

The method is, of course, apphc@blc to simultaneous
differential equations (p. 159), the- procedure followed being
similar i outline to that descubd in integrating a differ-
ential equation of the second.'order by resolving it into the
equivalent simultaneous pa;r ‘of first- order eqnations.

Estimation of total error
The total error il wsing the formula (3) may bo estimated
by using the e{{feésmn
O = 2k 2 [A“qx — 28A5g,]

which mobtamed from formula (3.1) by replacing ¢; by ¢o
He'rkee B = Joh[{A%, — A3q_ 1) — 28(AYg, — Alg_ Y]
«m is the number of integrations performed.

" AP¢_, and Ag_, are terms which must be estimated from

the difierences which begin with & = 0. Tn the table on
the previous page ” = 15 gives
=14

E = 90 [(1.) 640 — 3154) — 28(1645 — 349)] x 10

=1

-1
=~ 9p ~ 23,802 x 1078

= 264 x 1078,
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If this is compared with 29 X 107%, the agreement will be
found to be satisfactory.
Systematic method of integrating and correcting the approxima-
tion fo the solution of j—i = flz, ¥).
It has been shown that the method of integration just

described is capable, even without corrections, of giving very . O\
satisfactory results. It will now be shown that the extra.

labour involved in applying the correction, by using formu\i'a@\
(3.2}, is very small, .\
With the previons notation N

(Ysh = ys + k20, + (3A%, + A%q)]. (&
Let the term }A%q, - A3g, be set aside. :

When this value of (y;), has been used imthe differential
eguation to obtain (gg), this value may be Wsed in the check
formula ANV
(#s)h = ¥s + A[2g, & 34%,).

Now {yz)s — (y5), is the correqp?éij,’ and is given by

(Usle — (Fsh = [3A%5> (5A%, + A%)] . A.
But this latter correction \is' extremely easy to evaluate and
is rapidly inserted, (Again, as has already been pointed
out, 1A%, is avgﬂa\ble for subsequent integrations lby
formula (3). If.jt.khould be suspected that the correction
of {g5), obtaimell’ by substituting (ys), in the dﬁerentml,
equation might influence the value of (ys), again by a
second m{a“\of formula (3.2), then calenlate A[{g;); — (q5')1],
and if #his affects the accuracy required in y, the correction
showld be made. This, however, is seldom required.

N Examples.
1. Tabulate y at intorvals of 0-05 in = to satisfy the equation
dy
292 2%
{14 %) dz 1+ 22y,

where = 1 when 2 = 0; range 0 <z < (-4 correct to five sig-
nifieant figures.
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2. Tabulate the solution of the equation
g—g +P.y=@

subject to x =0, y = 0 at intorvals of &1 in x for the range
0 < <« 1 correct tofour significant figures. P and @ are tabulated
below.

. 9 oI (o2 |08 |04 |05 |06 |07 |08 09 L0,
P | 0 |0:0872|0-1736|0-2588| 0-2420| 0-4226| 0-5000' 0-5736| 0-6423, 07071 09680
g | 1 0v9962‘l]-9848 0-0650| 0-9379| 0-0063| 0-8660] 0-5102 0-?saai0-ro*:.1 6428

3
N/

3. Tebulate the solution of the equation (‘«'f;.
‘iy_ . 2 2 4 \
dx-—Ol.y + =z .\

subject to = 0, y = 1 at intervals of (B¥ in x for the range
0 <z < 0-5 correct to five significant fi g,

4. Tabulate ¥ at intervals of 0-1 intgMrom z = 0 to . = 1 to
satisfy the differential equation \S

w

d §,
=Y+ 1)

<N

£y

*

$

N

subject to @ = 0, y = 1. ™
Nofe.—Btart the solutien by applying Taylor's expansion or
Picard’s method to obffiin the initial va.lugs. v P

¢ iff;\
12.03. Murizon 1V.—A method of integrating the diffexsatial
eguation
p. } 7/ d
»O 2=z 9)

\
\§ Sjlb]f-'ct to x=a, y = b by successive approxima-
R tion.

N NS

e

Consider the equation

Yre1=¥y-1 + A[2¢, + 1A%, _4].

This equation has been shown to Possess an error in excess
given by

h
90 [A%, _, — ASg, 1).
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1f in the above equation A?g,_; is replaced by A%, _,, then
the new eguation

Yry1 = Y1 + h[2gr + éAﬂgf—ﬂ]

h c s
has a first error term of 5 A%, s, & term which is in general

much greater than the first error term of the first equation.
The latter equation gives an approximate value of i when,
the two previous values of y and the corresponding values
of ¢ are kncwn. Hence to start the forward integration
Yo Y1» Yo G0 1, and g, may be determined, say by Taglor’s
expansion. In that only three initial values cof 'y are
required, the method has an advantage over thap\previously
deseribed, and especially so iz this the ca.se\ﬁhen initial
values are troublesome to obtain. !

Having caleulated (y,.1), this valye substituted in the
differential equation gives (g, 1)y ~Jf the latter value is
used to determine Alg,_;, the firsprcorrected value of (%, 11);
is obtained. This should be cafried out by evaluating

g[(A2q1‘—l)l — A%, ], and-adding the result to (Y1)

The second correctiop tli';;;,H follows at once by adding

g[(A2Qr—1)2 — (A2 }:51] i.e. g[(qf-+ a2 — {gr+14d f0 (Frs1)e

The process shouh be repeated until it is clear that repeti-
tion does rof’add further to the accuracy required in 1.1
The Proceés of successive approximation is then ended. In
Prac%(?\’fthe corTections can be made with considerable
facility, and serve the purpose of checking previous ealcu-
Iatighs—an extremely important operation.

() Example.—To demonstrate the process of integration,

o

the following table contains the complete caleunlations for

the integration of the equation

dy __ 2
=Yt

subject to % — 0, y — 1 over the range 2 =0 toz =1 all
values to be correct to four decimal places.



134 FORWARD INTEGRATION OF
r " i
r— [ 4% )
x ¥, 2gh. 2- 4. 4. —id!"?r:-!;‘ E((d’g:;t‘h‘L
0o {1 1
031 | 1-105518 1-115513 | 0-115513 | 33,183
0-2528418 11,081
0-0011061
1259481 i
02 | 1224200 | 0-2528418 ; 1984200 | (148608 | 36,556
1-350461 1449461 | 0-185232 | 12185 1124
112 N\
1-239578 1-449573 | 0185364 | 36,868
n 12,223 \38
AN
08 | 1-350577 | (-2890154 | 1-449577 | 0-185368 | 96,072 24N\ *
1-515347 12224 | 1-075347 | 0-225770 | 12,234 \
124 | 1-224209 40,402 A\
LB1A471 | 1-5153408 | 1-675471 | 0-225804 | 12,467 1. N243
4 w620 479 41
T 135008 | &
04 | 1-515475 | 0-3350050 | 1673475 | 0-225808 | 40080\
1-606023 13510 | 1-04602% | 0-270548 | 333530/
187 | 1-350577 41,650
160 | 1-6060230 160 6357, 14,853 1873
i o Y e, eT
} 14,924 48
05 | 1-60A165 | 0-3802539 | 1-046165 | OI¥00R0 | 44)702
1-006202 14831 | 2-266202 | 320087 | 14,081
152 | 1-515475 \. 49,247
354 | 15088020 5N 180 | 18,449 1518
5 ) 40,459 )
- P g 18,500 al
06 | 1-006350 | 04532718 | 2788350 | 0320104 | 40504
151087 18501 (2691087 | (-374728 | 16501
168 | 1-696185,. | ° 54,634
255 2-15109'\69 255 896 | 18,178 | 1677
5 e 54,702
A 18,954 56
07 | 2151261 59\3282521 2841281 | O0-374902 | 54,708
2436435 18236 | 3-076435 | 0-435174 | 18.2368
18N, 1066355 80,272
620 | 2436455 620 256 | 20,001 | 1853
"\ 60,457 .
o Ny , 20,152 6L
0-8 [2'436626 | 06158252 | 3-076026 | 0435035 | 60,463
7\ 2eseog 20754 | 3-378602 | 0-501978 | 20,154
\ 205 {2:151261 66,811
O\ 807 | 27686010 su7 2181 | 22,204 2050
I 7 €6,816 68
22972
0-9 2768814 :0-7I57628 | 9-573814 | 0-502188 | 6G.m23
5154616 22274 | 4-154616 | 0-575802 | 22274
226 | 2436626 75'814
842 |3-154818 842 6028 | 24,538 2264
8 72,847 e
10 | 3-154850 24813 75

In order to explain the entries in the table, one complete
gtep in the integration is set out on the opposite page.
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I (41 = ¥ + P29 + §4%]
— 1-05513 - 0-2528418 - 0-0011061
— 1-359461

2 (e = sk + 2[(A%), — Bigy]

— 1-359461 + (0-0012185 — 0-0011061)
1-359461 + 0-0001124

=< 1.359573 .
3 (s = (Wols + 2L(AML) — (M%) O
= {ya)e + g[(qa)z — (g3} m.\'{’; :

— 1-350573 + ? (1440573 — 14ADA61)
&S

573 -1 0-0000037 <'~} l
= 1-359577

The next line of differences ,sﬁajay now be added since
a glance at the process showd that the next eorrection to
¥s amounts to N\

~ 01
’ig’\noooo% X 5

a value which is~1}3 small to affect the accuracy required
in the value.of’ ’g’gg," and it is therefore not necessary to carry
through thy :E[,r\rbcess again. The value of g i 3-154850,
and thig-effs in excess by the amount 0-000005. Could
this QFQ&I"’: have been estimated, and to what degree of
accuraey ? '
.. (¥rom the entrics in the second difference column it is
N 285y to see that

LY
@5 qa
0-1
= 9.

90 X 36
Hen@e, supposing this error to be repeated at each step in
¢ight steps, the total error is 0-0000024, which affords a
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rough estimate of the error to be éxpected, and therefore,
if this is well within the accuracy desired, the integration
may be continued over the given range with confidence.

121, MrtHOD V.—Alternative method of forward integration
not requiring a difference table. ~

The following is yet another form of itegration -6f the
differential equation alternative to that of thé\ preceding
Pages. Its special feature lies in the fact ¢hat no finite
differences are necessary to perform the sobtial operations
involved, but it is capable of yielding {he same degree of
aceuracy as that of previous methsds., It is moreover
simple and rapid in operation, and a\check upon the accuracy
of the calculations is provided. /"

Suppose, as before, that ﬁva'\m’i.tia,l corresponding values
i PN
of ¥ and q(: %) have been calculated. If these be 7, %
Yo Yo Yo a0d gy, ¢,, g3, G5, ¢, then

g5 = Bg,
= (1 —I:é}aq{l
= 0{“..5)&90 + 104%, 4 1043, + 5A%, + A%,
Leave outsthe term that in A% and
’\”\ %:594“109'3‘*‘109'2“5?1‘1“9’0 S ¢
Thi

erences. If this be now substituted in the equation

h;hf;}é'mlu(’: of ¢ is easily computed, and is correct to fourth

Ys = ¥s + hlg; + g, +¢] . . . (41}

the value of g; will be in error by 9% Alg,.

Thus it may Justifiably be considered eorrect to terms in
¥ with an error of the opder RS, If this value of ¥ be now
substituted in the differential equation, ¢; may be checked,
and, if necessary, corrected, and the integration may pro-
ceed using the corrected value
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The method may be summarised as follows :

I. Evaluate

1
(g5 = [(9’0 + 10gp + %h) - (%091 + 10?3)]-
II. Evalnate
¥s = Y3 + 3A[(gs), + 444 + 251

III. Check and correct (¢;); by means of the differential
equation {g;): = f(&s, ¥s), and continue the integration using),
this value of ¢;. NS ¢

As regards the actual integration, it is desirable £o'halve
each value of ¢ and insert it at the same time w{g;’thus all
the terms required in I are at once available )

I it be found that 1A[{gs); — (¢s)] is ofNan order sig-
nificant, for the last figure in y which it i@\desired to retain,
then the interval b must be reduced~Fhus, if this method
is to be continued after any stage_sing half the interval,
a value of § must be interpolated-pridway between two con-
seoutive pairs of values. Let.ph ¢y, G2, ¢» be four consecutive
velues of g; to insert a t;ejni midway between ¢, and g
Bessels’ interpolation formula gives at once

P = g + 02) .—*\‘QRA% + A%y} + whe[A%-1 + A%l
This without the %rm in fourth differences is in error by
< & of fourth differences, and may therefore in practice
be taken ag :e?orrect to that order. In this case the ex-
Pression m&y be rewritten as

‘."\\“ g1z = % 19(gy + %} — (@ + g)i
W}{éﬁ' one-fortieth of fourth differences does not have amy
influence on the accuracy required.

Having inserted g3, and ¢y, the mtegration'may be con-
tinued as before, using half of the previous nterval in .
I full benefit is to be obtained by the use of the for.mulae,
it should be observed that the last figure retained in the
values of ¢, multiplied by 8h, should not effect the aceuracy
required in the values of g. The table on p. 138 shows
the arrangement in a particular example.

o~y
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Example.—Integration of j—g =¥ + «* continued from

r=08%x=1,

Y- (¢)- (g)s. 1— ${17) - /
1-69616 1-94595 194616 | 097308 |
1-90635 2-26651 226635 1133175
215125 264105 264125 1-320625,
i 243662 307663 3-07662 1-538310
! 276880 3-57876 3-57880 1-78940 T
: 315484 415471 4-15484 U

Every value required in the formule is tbnee available
in this table. The value 3-15484 js 0:080005 in deficiency,
showing cleazrly that the method is efipctively maintaining
the required aceuracy. ,=ﬁ\\'

AN

1211. MuTHOD VI.—A second fmbthod of forward integration
not requiring a diﬂéfence table.
If it be required to‘péi-form & rapid integration ahead,

and an error of order~A? is allowable, then the formula of
Heun may he used<

<(’93)1 = Yot 3hlgo -+ Bg,] . . . (3)
This errs innde clency by 24A3%, When this value of ¥3
is substitl{ted in the differential equation and ¢, is found,
the integtation may be continued,
It should be noticed thas i the value of ¢, which has now
h\e;@ “caleulated is substituted in the expression

’ \’ ’:’. (gg)e = Y+ S, + 4q; -+ (gsh] . . (81
\'"\\:."EL corrected value of y, is obtained. A correspondingly
better value of (g,), is now derived from the differential
equation, and the process may he repeated using
CAPES (¥a)e -+ 58[{q3)y — (23h]

until this latter expression no longer influences y to the
desired degree of acouracy. The process of successive
approximation ig obviously not ag convenjent as that

|
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deseribed in the last method, unless the process converges
rapidly and the calculation of ¢ is easily carried out.

12.12. MerHOD VII.—The method of Milne.
If in place of formula (5) above the formula

(yn)l == yn—é + '?5;']'[2'2.%-— 1_"’ Q’n—ﬂ + 2%_3]

is used, a more accurate first value of y is obtained, which |
errs in excess by LhAlg, ;. If this value of (y.), is now
substitutod in the differential equation, (¢.), is obtained,”;
and hence substituting in the formula (5.1) above g;@:})r-
rected value of (y,), follows, whose error is ohAM"1 in
eXCess. D

Clearly if A [(#.)s — (¥.)1] i so large as.t‘o:\aifect the
accuracy adversely, the value of & must be reduced (see first
method of this type on p. 136); otherw:igettﬁe process must
be repeated until two values of y agregto.the desired number
of figures. 'The integration ahead shetrld then be continued.

12.2. Comparison of the methpllg of integration of first-order
equations. N
The final degree of ag@uracy which is attainable by those
methods which use Simipson’s Rule,

Yosr — Yooy — OG5 + 30 1) = $HlGn s+ 400+ o]

in the chec-kiug of integrations is naturally the same, there-
fore the difiérence between such methods lies in the forward
integratietgformulm used in conjunction with the above
rule. %efus suppose that the substitution of 2 and y in the
diiffe‘:éntial equation to obtain the corresponding value of

*d—g\ ‘involves so much calculation that unnecessary repetition

of the process must be avoided. In this case the forward
integration formula recommended is that used in the faxample
on p. 128, In general, the correction to be applied to ¥
when this formula is used in conjunction with Simpson's

) dy
Rule is too small to make necessary the recaleulation of ax
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using the corrected y. This iz one important advantage
of using the method recommended, which, however, is
possessed by the two methods which precede it. The use
of Simpson’s Rule as a check in place of the more com-
plicated formula used in the two previous methods is an
advantage over them, and, in addition, the checking of
values by Simpson’s Rule requires the caleulation i a
difference term which is used in subsequent caloulations

4 .\. S

{see p. 131). If the caleulation of gz by 31111§’15ituti0n in

the differential equation is a simple and rapitone, then the
process of suceessive approximation is ma(\ie:correspondjngly
easier, and it is then not as Importantd8yin the case above
that the first forward integration should'be carried cut with
a degree of accuracy which requirgs“only one substitution
in the differential equation. In-this case the method which
follows that discussed above ig th’oroughly satisfactory, and
Possesses the advantage that three accurate initial function
values only are required £0 Start the process. This method
is clearly one which eal’ be used to give approximate in-
tegrations within fairly wide limits of accuracy, according
to the number of ‘eorrections made, and it is therefore a
very convem’egb. ‘method, and one which is very simple
in applicat@(ﬁ)\ The Adams-Bashforth process, together
with the .éheck added to it, is equivalent to that of the
method\which follows it so far as forward integration is
congerned. It ig felt, however, that, although thoroughly
saund ‘methods, they are a little tedious in application when
Lompared with other methods described in this chapter.

..3.’}’1‘_]19 methods of forward integration without the use of a
~\/ difference table all have the same final accuracy, but the

first fxnd t'hjrd yield the more acourate forward integrations,
and in this order. Thege have been added as alternatives

to the difference methods, and are capable of giving pre-
cisely the same aceuracy,




CHAPTER V

SIMULTANEOUS EQUATIONS AND EQUATIONS
01 THE SECOND AND HIGHER ORDERS

13, Simultaneous squations.
14. Equations of higher order than the first.
15. A cheek for second-order equations solved as two simultaneous,
equations, ¢ \A)
16, Systematic methods of integrating snd cocgecting equations
2 {
of the types (a) g—x'z = flz, ¥); (b} d—;‘%':f(:c& .y.,‘.%);

<

dy e 27
@ % J 8. 2) } S
Tde }
El; = e Y. z}

16.1. A spoeial method of integrating' equm}a;ls gf the type
d'z.; , i L { B y
d_a.:'i = f{z, ¥) subject to & = &g 3.}‘732 ¥ (Tw)o'
17. Integration of equations of thg;,tifpas d—;% 3 q&(a:, y) = 0 and

&y d . » ".’ . . —
d—é = f(m, #, %) Sub]el_::ﬁ:t():w = X ¥ = Yo} ¥ =T Y=Yz

171, To obtain a more accurate solution of the equations in 17.
17.2. A sequence method applicable over a wide range.

The extension f'ihg methods of Chapter IV to simal-
taneous equations smd equations of the second and bigher
orders is a vepy'simple one, and requires little explanation
beyond that(Wliich js given by a study of worked ex'amples.
It may pégemarked that the importance of checking and
correctiny’ caloulations is even more important in the
examples of this section than in the case of first-order

" Qq‘j:aﬁOnS, since the processes are gsomewhat more lengthy
“andl a little more complicated. Hence, checking processes
have been introduced which in some cages bear no relation
to the actual forward integration. The processes have been
systematised wherever possible, so that their application
may he regarded as a mechanical process of a definite

Precizion.
141
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13, Simultaneous equations.
Let the given system be

d
Egzﬂx’ ¥ 2)
dz

2
dax = g(.’l‘:, Y, z)

in which « is regarded as the independent variable gixd g
and z are the dependent variables. A
If z==a, y=y, 2 =2, be the initial valiestof the
variables, then the first increments in y and, =.due to an
increment Az,, in z are given by Euler's method
approximately. O
2 .\
Thus Ay, = (f) . Az, ’
X0 O
= f(@0, o, 20) oAy
¥1= Yo + Ayk“;\
Similarly Azl — g(xu’ Yol ‘za')Axl
21 =2y 4 Az,.
Each of these values ) and z, may be correctod for

)< 1)

AN
Lo 1] dy dy
\Qé‘n =5 [(d_é)o -+ (35)1] . Az,
.. ‘ = %[f(xﬂs Yas zu) —l—f(ﬁ‘ll, ¥1 21)] . Axl.
Slmlqnl?z b Aay = gz, g, 20) 1 9(zy, 1, 2,17,

Whef’ the process has been repeated until the same values

&{ y and Az are obtained in two consecutive operations,

.zs't\he next intervel may be treated. In this way the initial
o 'values necessary to begin the more accurate process by

finite differences are obtained.

These preliminary values may be found more accurately
by the application of one of the formulm of Runge, Kutta
or feun. If the Simpson’s Rule of Kutta is chosen, then
on p. 105 will be found the sets of formula required, and
by direct substitution in these formuim as described in the
worked example the initial values may at once be found.
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Picard’s method may also be used or the solution may be
begun by direct expansion. Thus

2_2; = f{z, 4, 2)
therefore &y F(x, Y, 2 dy dﬁ)

da? ' da’ dx
vy dy de &y d%
a-nd dﬁbq - (f’(xa y: Z, d._ﬁ’ E‘x: &gz: CR})
& dz d% <O

and sim_i]arly for E, d&?, ac"s, e 1 O

Now, since ¥ and z are assumed capable of expaﬁsﬂﬁn in
powers of x, the above values calculated at the ifitial point
(%0, ¥y, 2o) AT€ substituted in the Taylor's expamsions for y
and 7, and the increments in y and z are ,ce&gulated. Thus

! 1 n { Nt fr
=yl + &r) =y, + Ax. Yy +2—44§‘-yu
Q,j:'.. ”4',— 3-11 Ax? oy 4 - ..
in which Awx is known and ,:{:' \
Yo = (%o Yo %a) p g
it Bl oy (%%
Ys —f\(‘”é Yor Zon (dx)o’ <dx)o)

yumé‘ ‘){’(xt" Yo Fos (g%)o’ (ft—z)u, (gi—?é)o’ (ﬁ—ii)e)

PN\Y;

and sinﬁla{lg} for z,. _
Whe&St‘h"e snccessive differential coefficients are obtained
withgub great labour, this is the most suitable method. In
037}12?1‘ cases either of the two previous methods may jbe usefi.
iXamples illustrating these methods are described 1n
Chapter II1.

14 Equations of higher order than the first,

Any differential equation of the second or highe.r order
can e reduced to a system of simultaneous equations by

the introduction of new variables.
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Let the general differential equation of the nth order

be written g—a’%=f(m: Y, y’) y”! L yn—-l)
tjg ' dz?l_ T

in which =Y ae=Y ; ete.
The equation may be reduced to the system ~
dy
=g L\
d O
Yo = j‘%l N\
d A
- R
_ dy::—g o ::\\':
Yn-1= ax ‘\ v
dign—1 _ Y
Yu = a%—“‘l :'T'f(x: Y ¥ Yas o - - ?{n—l)-
The solution may be‘.g(’;‘xﬂmenced it @y, . - Ya-1 B0
e '..’; . d dzy dﬂ_ly .
known initially, tj“ha.ﬁls, if z, ¥, ‘d_g’ T et are gIven
at some initialpoint ; thus if the method of Euler is chosen,
‘ \\ ’ d?}n_ 1 — f
dz T
therefore Ao 1=Ff. Az
thérbtore the new value of y,_, is given by
Nl (¥a=1)y = (§n—3)o + By
o\ . d
\* Again j%";"‘: Yn1

therefore as above (y,_ ), = (yn_1)p + AYn-2

When the new values of y,_5, . . . g,, y have heen found
by Buler's method, these may be corrected as already
: . 1/d a1
explained, using E[(ﬁiﬂ)n + (ﬁng) 1] in place of (j%‘" '),,'
The student should have no difficulty in following the Pro°
cess. These values, in turn, may be corrected by processe
which have been described, or are described later.




OF THE SECOND AND HIGHER GRDERS 145

The method of finite differences may be applied once the
cohition has becn started, the number of initial values
required depends upon the method chosen for forward
integration.

15. An important check to be applied to the solutions of second~
order differential equations when solved as a pair of
simultaneous equations of the first order.

The approximate equation O\
A%y, = By, + +5A%-] O
8 N
has a first error term of Lo y,¥1, and the equation s therefore
240 RS

suffiiently accurate to act as a valuable cliecki When a

second-order equation is integrated by regolving it into the

equivalent pair of simultaneous ﬁrst-o;:@r. equations, there

are two tables of differences, those off g—ia.nd %yg The above

squation enables us at any stagefdf' the integration to check
the value of #,,, by using quantities already calculated in
a very simple but effective ‘manner.
Congider the examplg@hich is worked immediately below.
Let it be required'\ﬁq check the value of y, = 255602.

e = 6-15225

@, = — 0-00315.
Hence (A%, , = 0-01[6-15225 — (-00026]
% = 0-01[6-15199]
wmd AN Ay, = Ay q + B%r
R\ — 0-34423 4 0-06152
O = 0-40575.

A iy
' T}“‘»’* agrees exactly with the entry in the table. )
Note—The equation forms the basis of an effective

2, .
method of integrating the equation % — fa, y) to be
described later,

; d? dy — hen
Example.—Gwen J;E; -+ 3z o by = 0 and that W
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z =0, j——g = 0-1, y = 1, find the values of ¥ at ‘ntervals of

01 in xup to z = 1,

%, d .
d_.’.t’,“;! ES ﬁy — 33;'% . ' . [ (1)
dy ‘
Let j_xﬂ : %
az . 2 \:\
then = 63 3uz R\

The simultanecus equations (i) are eq\ui%;glent to the
single differential equation (i), and the solfilor of the latter
equation may be found by solving the,ai)n\ult-&neous system
(ii) by the method applied to simultimicus equations of the
first order. The numerical caleylation may be set out as
below. First of all the initial values of y and z are calenlated
by using Kutta's Simpson’s Rnle, and on p. 147 the actual
caleulation of y, and z, is carried through completely. The
remaining values are found in precisely the same manner.
Since the error in usmg “these formulwm is of the order A,
when = 0-1 over four intervals it may be assumed that
the fifth decimakpla,ce in the values of z should be suspect,
but that for 4V further integration being required, the
values corréet: to the fifth decimal place should be much
more acg:mfate. In point of fact, this forecast of the accuracy
is tully justified, since only the final value of ¢, viz. y,, needs
to bejehanged by one unit in the fifth decimal place. The

allowing table contains the results of applying Kutta’s
,’\"fo mula.,

O z. . z. ]
\ —
N\ 0 1 N
01 104005 070146 |
-2 114040 1-30587
03 1-30133 191310
0-4 152312 2-52295

In. order that the solution over s wider range of x may be
obtained with these values, they will be checked, corrected,
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ond the new set of values used. Should these differ suffi-
ciently from the present values, a second correction would
he necessary.

Correction of first seis of values of z and y.
Using the values of y and z in the foregoing table, and
substituting in the differential equation

dz
= Gy — Sxz A
dz " _ o ',..\:\ e
((E;]u--—ﬁxl—SxOxOl_ﬁ O
dz’ , O
TN = 624030 — 0-210438 = 6:02086 )y
d/ | AN
similarly V
(%) —- 6.05886 N
- Qe
d-z\ PN
(%,3 — 6-08619 |\O
(gﬁ) — 611118, 8%
*4 N
Forming the difference table
KA
e
d N\ : A
e ”a\?\ Az, A3,
6 WO
NS 2086
602986, O _ 86
\J 2900 —8l
G'O@ — 167 14
= 2733 — 67
808619 — 234
N 2499
\3 611118

Applying the formula of correction for the last interval

(A2)_, = Am[@g)u - A@L ) M%f‘)-y
: b2 z
s A3(§;;)_3 — s A{E:E)ﬂ .

[

N
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= (+1[6-11118 — 0:012495 + 0-000195 -|- 0-000028
— 0-000004]
= 0-60989.

Similar corrections applied to the other intervals (Az)_,
= 060727, (Az)_; = 0-60445, (Az)_, = 0-60150. The.cor-
rected values of z ave therefore 0-1, 0-70150, 1-30585, 1-91§22,
2-52811. Using the values of 2 just found, the cp@espond-
ing values of y are caleulated in an exactly sim}hr hanner.

The following is the table of results. A\
7 | |
. dy ,"’}\ P ‘ 4
Y Ay, = A. Az, A A
1 01 ON
0-04005 BL156
1-04005 070150 |\ 205
0-10035 {80,445 — 13
114040 1-305954 " 282 -7
0-16003 o871 60,727 — 20
1:30133 1-01%32 262
0-22180 | o\ 60,989
u52313 | 252311 |
— 4 | —

AN
The Vﬁlﬂfﬁ;\é})ﬁained for y are little different from those
already obtained, so that if the fourth decimal place deter-
mines the\degree of accuracy ultimately required, the pro-
cess of\forward integration may now be commenced, the
val,u\e} of y in the table being correct to a unit in the fifth

g}\e@imal place at present.

A > Forward integration.

a \
\
\ 3

(1) Using the formula

dz 1, (2 5 ,./d
Azy = h[ - ~ A[%* 5 Aotz
“ (dw)u T3 A(dx)ﬂ t 1z ‘52(‘;;93)_2
3 \ofdz 251 ., ]
tga (;z.:c)_a + 730 A
— § X 0-00055 4+ 233 x 0-00031]
= (-61225,
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The new value of z is therefore 3-13536, and substituting
in the above table of z’s and its differences, the new line
of differences hecomes

% Az. Az, Alz, Atz
313536 0-61225 236 -—26 -8

(2) Using the formula

spos (), 300~ @)

__ = As8 y 4 d@ '\]
o (d . — b (d N,
Ay, = 0115 13536 — O 306125 — 0000197 + 0000(}11
r-[— 0000002]
= (-252%81, v
H
ence O

== 180604, K7
Yoo U R

\\,/ . dz .
(3) With this value of y the corresponding value of d—z is
obtained by substituting in the eC;uatlon

%‘?m By — Sz ~.'.'2’ y = 1:80604
i g \: z =05

2

- pa— LdF " = '13536
(dx)5 = 813320, (O z=3

dz
Construct the new line of differences for dzc

{4) Chtﬁck{_\-z)“i using the formula similar to that in (2),
(&z)gc\f) 1[6:13320 — 0-011075 + 0-000235 + 0-000046]
0-61224.
~"\The correction is too small to affect the integration for ¥.
\ “(5) Check the 1ntegrat10n for y using the formula

M =i [(2) + (%)

Ay, — 0-01[6-11105 — & X 0-00282]
— 0-01[6-11105 — 0-000235]
= 0:06111
Ay, = 0-22180 - 0-06111
= 0-28291.
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This is in exact agreement with the value in the fable,
and the integration may therefore be continued a stage
further. The terms required in using the formulse for Ay_,
and Az_; may be included in the table. One such line is
included in the table on p. 151, which embodies all the results,

The value of y at @ = 1-0 given by the ahove integrations
is 4-14386, or correct to the fourth decimal place 42439,
The forward integrations maintain the accuracy, cf"the
initial values calculated by Kutta's formula, and afthough
these were corrected before the integration wad Degun, the
corrections were very small, and little error wonld have been
introduced if the forward integration had Been begun with
these initial values before eorrection. ,\e\N

The combination of Kutta’s formulswith this process of
integration is thus very effectivesindeed. We may note
that every value of ¥ in the abdy¥ table is correct to the
fourth decimal place. The Jestimate of the total error

derived from the term $h A% Y is clearly too small to affect
the required accuracy in the given range.

Note.—The series so]utjigin for the fore going example is

_ N1 3 9 45
¥=1+ 0l + 3224 a _ 3 R . L
V=1 0 f}+ 2% T 500% T 5600% ~ T34.400°
A 9 x 45
) T e 134400 ¥ T

e d2
Ne) == y)
®) Py _ (70, %)
dx? AR
dy
© gg£=f(w, Y, 2) ]

dz
7= 9 v, z)J
Methods of integrating the above equations are set out
below in step b

Y step form, so that the whole procedure
may be followed out, systematically,
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(A) dx3 —f(x, ¥)
Let the equivalent system of simultaneous cquations be
d .
Fegqg . . .0
y = @=f(x,y) .. (@
Let %, go 7o: . Y4 T4, ¥y be the sets of (rmcqptmdmg

values obtained by one of the previously uvserﬂ)ed pro-
cesses for the early stages of the solution. \ O

Checking and correcting inifial values. (‘D
(i) Correct ¥, by the formula v
Y1 — Yo=hlqo + 3Aq, — TEQZ‘% + 2 A%, — F5A%]
& k 4
\ Error, 20 Adg,,
{ii) Calculate r, by usmg equatlon {ii}.
{iii} Correct ¢, by \\
N . h
G— G = 17’{*’2 -+ 4ry + 7] frror, 55 A4€°
&N h(2r1 + 1A%,
{iv) Correct @;by
$2'S %o = 3les + 4g, + qo] = £(2g; + $A%)-
(v Calenlate 73 by using equation (ii).
The above process may be repeated with the corrected
va{ti& and stopped when the same values are repeated.
orward inlegration.
(i) Evaluate y; by using formula (i), viz.
(s 92 = hl2g, + 4%, + A%,].
31h

oo AS
Error, 50 Alg, qa-

(ii) Caleulate T5
(iii) Caleulate g, using
(@5 — ¢3) = R[2r, + §A%,].
(iv) Correct {y;), using
(#6)e — yp = A{2g, + 1A%g,]
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and therefore
(¥s)e = (s)y + A3A%, — (3A%, 4 A%q))]
(iii) and {iv} may be repeated if necessary in exceptional
cases.
(v} Evaluate yg, then repeat the process outlined above.

o

Note.—No forward integration is required for the ¢’s.

153

O\
Example—Solution of 2 — 2(2* — 1)y — R
ampie.—solution of 75 {22 = 0. O\
Initial conditions x==0 ’ O
y=1 N
=0 7\
- —
oo . I B at. A%, r, 4. ELN
°ot ’ ~19,801 _2,\\ 5,950
01 | 609005 | —0-10801 1,170 | S1.4050 11,315
f —1s6a1| 590 | LOBNY 17,265 | 8,772
o2 | 6-96076 | —0a8442 2,227 | o\  —1r6788 9,835
; — 18,404 T4y 842 26,000 | 3,212
021001993 | —0-54536 H}éﬁg —1-40885 7,008
: ~13,335 T1023] 556 38,908 | 2,361
oo|osazts | —oestrt| LN .00 115602 + 4,017
077880 \’\ig,.r’w 1,208 | 245 38,010 1,338
05 [ 077582 | ~0-77881 3,870 —0-77882 B0z
G-80767 798| _ sgee| 1,200| — 77 38,812 267
06 | 08788 ’463\37"21 +3.703 —0-30070 — 2,193
08128 > — 2047 | 1,864 —3dd 36,610 | — 731
07 WAnD-SaTGS 48,449 —0:02451 st
Ldcberen + 1,402 | 1,100 | —569 81,078 | — 1,547
;Oi’m; —0-82360 2,500 +0-28527 — 6,345
b | 0-ead56 + 4,202 o83 | —o684 25,683 | — 2,6
09 | 0-4448¢ | —0-8007¢ 2,207 +0:55180 — 7,223
0-36738 + 6499 | 736 | —734 18,410 | — 2,408
1'0 | 0-86785 | —0-73575 L473 +0-736570 ~ T.297
-20520 + 7,972 401 11,113 | — 2,432
11| 0-20818 | —0-65803 + 788 +0-84683 ~ 8,782
0-23693 + 8740 256 4,301 | — 2,241
12 [0-23000 | —o-56883 080074 -
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It should be remarked that no third differences are re-
quired in the difference table for the 7’s, and that no altera-
tion is made in the tables. The correction applied to the
y's is very rapidly carried out, and is too small to make it
necessary to recalculate the values of r. The interval in
@ can readily be chosen so that this is the case, since at
each integration ahead the accuracy in this value of gnis
carried to the r's by means of the differential equation.
Thus, since the accuracy of the r’s need not be that'ret}mred
for the »’s, the process maintains its standard of Jaccuracy
throughout. N

In the foregoing example the final valué; of y = (23693
is correct to five significant figures, and W‘e}rj, other value of
y has this same accuracy. N
Typical forward integration and cox{&cfzon

(#e)1 ~ ¥z = 0-1[— 1-68732 qg. [0:01290 — 0-00344)]
= 016779 &\
therefore N
(39), = 044484 ,’.'
()2 = 0-44484 + 0-1[0-00963 — 0-00946]

— 044486
Ty %.0-55160 from the differential equation
and gy 2= ¢; -+ 0-1[0-59054 — 0-02115]
N = — 0-80074.

'\.. ——

Al%.’l’.' A method of integrating equations of the type
Q) | Py

@:f(‘r! 3!)

subject to x = 2, y = ¥, j; (jy) to be used when the values

d,
of d—‘g are not required,

The methods of integrating the above equation which

have been described necessitate the determination of C-.Z?—, at

dx
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each stage cof the integration. If the value of ‘% is not

required, then the present method, following lines similar
to those explained for a first order differential equation on
p- 132, will be found convenient and aceurate. The method
has the important advantage that it is necessary to have
only three function values before the integration can be
systematically continued. Consider the approximate equa-
tion for forward integration
r . L "\
Yro1— 24 + ooy = Py 4 75A%, "] g M

Ii the terms are expanded, the equation has a ﬁrsi, ebror

term of — f;—; " on the right-hand side. Hence {othe degree

of accuracy governed by the magnitude of\this error term
the eguation may be regarded as one éxBressing Yy iD
terms of known values of g,, y,— 1, % ajﬁ Ay, "

Let y,, 9y, and y, be determined\By expanding y as a
Taylor’s series,  having been chosgh so that the error term,
sy, (see later), is too sgna:]l'to affect the accuracy re-
quired over the range of integration. Using the above
approximate equation, yg48 determined, and hence y,” may
be ealoulated by using(the differential equation. The next
step provides a chedk upon the calculated value of y;, and
at the same time{@)correction.

Now Y- +.1\’_:"\2yr + Y = ka[yr” + AsyrHIH]

is a mO\é:’éccurate equation than the first approximate
# 4. The value of
240

&N : ; d it should
%38 recaleulated by means of this equation, and1
dlﬂ'er from the previously calculated value by only a few
Units in the last figure kept for the y's. If thef-e is a wider
divergence in the two values of ¥, consideration must be
given to reducing the interval, for this almost certainly
&
Means that the error 2%0?;,“
rapidly to affect the accuracy of the last figure in the ¥’s.

SO\ .
equatien, its first error term being

is accumulating sufficiently

2 AN



N

N @, .
' Bstimate of the approzimage error over the range of integration.

\
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The value of y,” need not be corrected, however, for a
slightly lower degree of accuracy is allowable in the #"’s
as compared with the y's. It follows that the tables of
differences for y and »”’ are being systematically built up,
the y table from the second difference column to the y
column, and the ¢’ table in the opposite direction.
The steps in the integration. \

1. Form the differences for Yo Y1 Ya and 3,7, 3,00, ".

2. Calculate y,” 4 LA%" ~ 9.394(1 - 0300037 =
2-39374; column IV, A\

3. Insert h¥(y,” 4 Py} = 0-0239374%n ¢olomn IX,
and hence by adding to 0-132324 obtain Ay, == 0-156261;
column VIL  Add Ay, to 4, to givesthe first approxima-
tion to y,; first entry (a). AN

4. Caleulate g, by substitution in the differential equa-
tion and form the differences mcolumns II, 171, and IV.

5. Recalculate y, as in ( 3)\using the formula

A%, = PG+ A%,
see columns V (2-89326),"X, VIII, and entry (b) in column
VI, the latter being.the corrected value of Y

The above progess is repeated for each integration. In
the example cﬁo;{ipératively large steps in x have been taken,
and six siguifieant figures have heen kept throughout the
caleulations,.” The accuracy demanded from such an ar-
rangement-should not be more than five significant figures,
a-nd‘"tfg\'af this is maintained ig clear from the fact that,
COErest to six significant figures, the value of y,is 1-02885,

. lel\ereas the value found is 1-02886.

*

. The first, FIOr term in the equation used in the sucees-
8tve approximation for the value of Yreq 18
hs . h? ”
2—4—0- N ALIEN é?ﬁ . A4y¢-._2

= 240 *x 0-00099,
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This term, although increasing to

0-01

34 X ¢

00215

157

at the end of the integration, clearly does not affect the
accuracy required in six integrations, but the manner in
which the error term may grow to several times its initial »
value should be noted and allowed for.

N
oA

Exampieaﬁl ntegration of y' = 2ve* — 42 subjéct fo
=0,y =1, :c == {},

¥ 4 "0
S D

I 1L g L v
i 2 yr” '+' i ;',"-” +
", ¥ &. ﬁ - ’{K&gy’_su. T%Agy!—lﬁ'
0 % “s'\l.
0-19930 \
01 | 219930 —aap = {3y
0-19481 o\
0-2 | 239411 —8pem L B2 | 2:30374 2:39329
0-18503
03 | 257914 — i 1341 257832 2:57780
0-16897 | N8
04 | 274811 Ao Egg = — 184 274884 274617
0-14565 |
-5 | 2-89376 ONY —22p3 = — 264| 2-88182 2.89128
04189
06 . 500768 \N{
L O
(. ‘ VII. VIIL IX. X.
- :\. W N Al. Az- j &]g. Agz_
ol o
N 0-110332
|01 110332 0-021592
-132324
02 (242656 013 0-0230374 | 00238328
-3¢ . 0-156257
03 383333}; 0156261 ? 0:0257832 | 0-D257780
-58( . 0-182037
04 IE: ggggggg 0182040 0-0274684 | 0-0274617
. 5 . 4 | 0-209499
05 28.338i;§ 0-20950 0-0289182 | 0-0289112
a 1-028866 0-238417 | 0-238410
08 | b 1028850




1568 SIMULTANEOUS EQUATIONS AND EQUIATIONS

Modification of the above method.

In a recent paper (Vol. 77, Memoirs and Proc. of Man-
chester Literary and Phil. Soc., 1932-33) the ahove method
has been modified, in that the value of A%, _, in the formula

A%,y = By + A, ] ‘
is estimated in the first place, and then, having found the
value of y,. ;, the value of y,, 1 18 caleulated 1y ssing the
differential equation, and hence the valuc of Ay, 2 s
corrected. This is an extremely effective progedure when
carefully executed, and the method is strongly recom-
mended where the estimate of A%y, " is éasily made.

(B) =1 9, 5

Let the equivalent systemshof’ simultaneous differential
equations he )

o\

dy o5 :
‘gg:fj_*l N i)
‘d ..
i[“"‘" gg =fle,y,qy . . . . . (i)

Checking and ci(ireéting nitial values,
(i} Correot y, by the formula
%= ‘%‘"—: Mgy + jAq, — ey + A A%,— J,A%,).
(it)Correct ¢, by formula above,

gi}‘Substitute new values of y, and ¢, in equation (ii)
and caleulate r,.

'\3 S (iv) Correct g, by the formula
~\J (T — g = $hlry + 40 - 7o) = R[2r; + 3A%,].
N/ (v) Correct y, by the formula
¥ — Yo = $A[(g,), + 491 + @0l = B{2¢q, + 3{A%0)4].
using the corrected values of G2
{vi) Calculate r,,
If necessary, check gs and y, again.

{vi1) Correet g, as at stage (iv), and repeat the process.
Stop the process when repeated values are ohtained.
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Forward integration.
(i) Calculate ¢;, using the formula
{g5)1 — qs = B[2r, + JA%r, + APr].
(ii} Calculate yy, using the formula
(s)1 — ys = h[2qy + ${A%;,) ]
(iii} Calculate ry from the differential equation, using the
values from (i) and (ii). o
(ivy Correct {g,), by the formula 'S\
(@) — 0 = R2rg + 307 O
(v) Correet y; by the formula m:\'\'
(45)e — ya = B[2g, + (A%y)):

it (Ysa={ysh + k. E[(A%s}zé(‘ﬁﬁgﬂ)ﬂ
= fua); + [(9’5)2 (gs)1)-
(vi) Apply the check o ’.:’;

Ay, | = hﬁgm S A, 4]

(C) Systematic methc{dsof mtegr&tmg and correcting the
simultaneous eqnat\gﬁs,

el e |

B~ o9, 0

& (i)

R Te=gya) - - - -
N dx
’\ J .
We Wu\t‘e £, and g, for f(@n, Yn» 2a) 0A (s Yo, z,.}, respectively.
N\

@Eéking and correcting tnitial values.
With the usual notation.
(i) Correct y, and z, by the diference formule

— A[f 2 AY,]
Y — ¥ = hfo + %Afo A%fu‘i"“uAfl} feitTe
71— z;’ = }-"[92 + 3Agp — 1 1A%, -+ A%, — Lol

(i) Calculate f; and g;.
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(iii) Correct ¥, and z,, using the formule
— yo = $fy + 41+ Sl = h(2f1 + $4%0)
2:2 — 2o = 3hlgs + 491 + Gl = h(29, + $4%,).
(iv) Calculate (fy), and {g,),. Hence make the corrections

3R[(fa)e — (f2)ul and 3A[(ga)e — (92)1l

to ¥, and z, respectively
(v) Correct y5 and z, as in (m)
(vi) Calculate f; and g5 as in {iv), and make th.q borrec-
tions as indicated there. A
(vii) Correet y, and z, as above. R
The whole process may be repeated if negessary

Q!

Forward integration. \
(i) Evaluate (y5); and (25 using;ﬁ’aé formulze
(W) — ys = h[2fy + 38&J + AY]
(zs)y — #a = A[294 & + $A%, + A% ).
(ii) Calculate f; and i 'a,n{I correct (ys), and (25), by the
formulae \
{ys)e — (‘ya) ;~ K2f, + §A%f;) or
*f\ya)z = (yg)1 + R3AYs — (A%, + A3
{z!»{é\_” 2g = h[2g, - §2%,] or
{25}y = (251 + h[sAzza {(348% + A%zy))
Ji\necessary recalculate f and g, The correspond-
/oIng corrections to y; and z; are

O B — (fa] and $8l{ge)s — (g0

(iii} Integrate ahead and repeat the above process.

\\ Alternative process for forward integration.
{i) Evaluate (y;), and (z;), using the formule
(¥s)1 — s = B[2fy + $A%Y,]
(zg)e — 23 = R[29, 1 1A%}
(if) Caleulate (f;); and (g5), and correct (y); and (z5); BY
the formulme

{(¥s5)e — s = h[2f4 + %Azfs]
(25)s — 25 = h[2g, -+ $A%,)
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(iii) Recaleulate (fs) and (gs) and apply the corrections

(s)s — (9 + 2 — (o]

(z5)s = (25)2 +%[(9’5)2 — (gs)1]-

(iv) Repeat above process for ¥s and zg.
Note.—This alternative process may be started with four
initial paivs of values of y and z. )
O

Examples. N\

1. Determine corresponding values of =z and ¥ i':\ithe range
0 < ¢ « D5 et intervals of £ = 005 to satisly the aguation

de QY _ x 2 )
R R

&
m=0,y=0,t——:.0.3\
2. Tabulate the solutions for x and’ ws at intervals of 005 in ¢
for the range 0 < ¢ < 0-5, to satisfys

Y
W o oyl g = =

where m\ﬁ b, y=1,t=0
dz Ndy ., ' i =
CIF GO — g — dif =0, y=—1
3. If gd£_2x » & Y x -+t an ¥ ’

when ¢ — 0 tabilite x aud y at intervals of 01 from &= 0 to
i =06, <
4. Tabu}t‘?téa“g} and f;i to satisfy the equation
"\‘.

&7 L)

NS

™

,\g"@j'ect to z =.0, gﬂ =1, y=0 at intervals of 0-05 in @ in the
. Y ol
\ tange 0 < @ < 0-5 correct to four decimal places.

5. Tabulate y and gﬂ ab intervals of 0-1 in for the range
i

0 < 2 < 0-8 correct to four decimal places ¢ satisfy the equation

2y

&Eﬂ—‘ixg—g-—-‘ify-"'-—o

subject to 2z = 0, y = 0-5, % = 2.
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6. Integrate the equation in B, giving only the values of y by
making the substitution y = v. ¢ and integrating the rosulting
equation in normal form for «.

7. Integrate the following equations eorrect to four decimal
Places giving ¥ at intervals of 0:05 in .

2, -
fa)%ﬁ:(xz—]-l)y,wherexmo,yzo,gi{:l, ¢ =z =05
i . »
{&) %?{:(y‘*—f-ljx,wherexzt),y:{),g—‘z:l, 0 <@ = 05,
O\
17. Integration of differential equations of the types O
%
Tt smm—o O
@
d2y 99y O
det = I\® ¥ g, '

subject to v = 2, y — y,; = ;:’;25},’@ = ¥,.

In the practical application of differential cquations of
the type WV

emdh=o ..

it is very frequently the ¢ase that s numerical solution is
required, subject to t@undary conditions of the type:
T =g,y =Yy; k=), ¥ = ¥,; error in ¥ everywhere less
than some given “siall number. A direct solution by
expansion in g {power series may fail because the range
{0 %) may be’ greater than the radius of convergence
of the seriegywhile an application of the process of continua-
tion, whére the number representing the slope at (z,, y,) is
carried Morward from series to series, is burdensome and
inceftvenient.

~The simplest method of approach to a graphical solution
would be by means of the sequence

Yro1 = — f:dt L dtd(t, y,) + Ax & B. . {2)

where 4 and B are determined at each stage by making
Yr+1 conform to the required boundary conditions. This
can best be effected graphically by sketching in any first
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approximation ¥, satisfying the required conditions. Using
the sequence (2) in the form

d*
&xé'ﬂl':_x{x’y’) N

d?y,, ,/dz? is then sketched in on an z base. Integrating
this curve by means of a planimeter or otherwise, the shape
of the curve dy,,,/dz in the range (x, «,) is determined,
but its position is not. To make dy,,,/dx conform to the
required boundary conditions, any one possible cur\{e‘\fér.\
dy,. 1 /dz s integrated between ®y and z;, and the digplace-
ment of this curve parallel to the y axis required §o'make
this integral equal y, — ¥, is easily calculateds {The next
approximation y,,, is thus definitely determined, and the
process may be repeated until the differenge’ between two
successive approximations is less than’he error initially
postulated zs allowable. If an errdf e 1 per cent. is per-
missible in the final result, this may be attained graphically
with comparative rapidity (see p.p4) ; but if greater accuracy
is desirable it is usually needSsary to compute the values
of the integrals arithmefically. A suitable method is
described later on p. 164
A process simiiar{t-& the above is clearly applicable to
equations of the t¥pe
A\ 2 d
o7 i)

(N
the se%é}z‘ce‘used heing
O, -
NS Y == f(@, ye, %)

X

g\ ’ Yrp1= let J; f(ts Yrs yr’)dt + Az + B.

An examination of the conditions under which this
sequence of steps is convergent leads, however, to ?he
conclusion that it is subject to restrictions it application
similar to those referred to in the case of an attempted
solution hy expansion in a power series, Vi that_the
sequtence is convergent only over a limied range (see P- 68).
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Equations of the above type are readily integrated by
processes already described when =z, y, and (%) are
a

given, by step-by-step forward integration, a process which
can be carried out with almost any desired yrecision. The
difficulty with the boundary conditions in the above form

is to find the particular value of (%) which yields{the
’ 0

value of y =y, when 2=z, after integration{JIf an
equation with boundary conditions of this tyye)arises in
the course of a scientific investigation, it is,mkabable that
the general form of the solution in the given frénge is known;
if, however, nothing whatsoever is known of the solution
except that it passes through the tw\&n:l-voints, then a
preliminary evaluation of f(z, y) ipthé region between the
two boundary points will indicaté how the curve must lie,
g ‘S

since a-fz indicates the sign gf: the curvature.

Having found the genéral trend of the solution, the
integration is begun By assuming a tentative value of g%
initially, The ﬁ.rs@ integration over the range need not be
carried out yety accurately, but this first solution will
usually indjcaté how to approach a more accurate second
solution sdtisfying the boundary conditions, demonstrating,
as it does; how the required solution probably behaves in
the. }“f’gibﬂ considered. The approximation can be adjusted
t§gmt this behaviour. This will lead to an approximate

J8olution for which the final ordinate is closer to y, than

N d ,
()" betore. Plot (Ez) against ¥, in the two cases, and inter-
L]

\

polate a better value of (g—g) . The succeeding solutions
£
may now be made more accurate, and the above proeess of

interpolating a hetter value of (?) continued until &
L . L/ a
solution is obtained which is sufficiently accurate. An

important method of obtaining an accurate solution when
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an approximate solution is found as above is given after
the following two examples.

Example.—Consider the equation

j—i‘%—b—?.\/(e—“‘— ) =0

subject to z= 0} =03 }

jeet y=20 y = 0-25
Y 2, 0 d is loss than this afeal
m= at ¢ =0, y =0, and is less than thls.\at all

other pessible values of  and y in the range. Aszmﬁhﬁnges
from 0 to 0-5, the greatest possible value of y id/h

The solution for (j—g) = ©'5 ig first obtaji"ﬁéd, and then
q

A\
the solution for (%)0 = 1. From ‘t’l".@se\the value of (ﬁ—?;)u
is interpolated as O
- 1 —='9%

0-5 + 52607~ 0-0564
= 0-5 + 0-413
— 0913,

RS

* 0-1936

The differenti i’(3::1uﬂ,1:1'0n is again integrated, and th'e
values are cqn-;%ted until an accuracy of four figures 18

, e ing pairs of values of ()
obtained. Nfhe three corresponding pairs of values ol i,/

and 1‘”3;.1%;10\?? plotted to see how the values of y, are vary-

ing" “\’lth those of (%g) , and it is found that a linear inter-
NN o

\m \“polation from the last two solutions for T '
n the next solution. This gives

would probably
0

give four-figure accuracy i

(ﬁﬂ) — 0-6207, and the subsequent integration shows that
T g ?

pe L
the accuracy is everywhere within 550
The following are the tabulated results.
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| = o | oL 02, 03, o4 | os, —‘
Ay | 15k solo. | —2 —1-812 | —1-642 | 1478 | — 1330 ‘ 100
@ |ond ,, | —2 —1800 | —1-610 | —14f4 | 7235 | _-1.086
Ard -2 —1-80% —1-612 —§-432 — L1263 . —1-11%
4th . 1 -2 —~1802 | —1-611 | —1-430 | —7-260 | — 110§
& | m 05000 | 0-8100 | O-I370 | —0-0185 | —01501 - 0-286
do - (2 1 -810 0G40 U-dE8 0-358 240
(&) 0913 0-723 0552 (-0 0265 ¢ 146
{4} 0-020y7 0-7306 D501 U508l 0-2%37 ! 1566
# (1) Q-0 {O-0407 0626 0 GET 00593 | a-as8d N
(2) 00000 | 0-000% | 01627 | 02190 | 09611 | iro0u3
53] {0000 0516 §-1452 1026 U-2ERE Lk.‘.’.'-igl.
£2) 06000 | 0834 | 01488 | 0-1950 |  0-B5uu ‘ , 03801

£\
The method of solution indicated above ca,n.’jgléarly be
extended to differential equations of the typer)
&/

d d Q

ﬁ’éJrf(x, ¥, d—i{) =0
AN

Example.—Solution of -

X
S

42 d O
ot T U+ w088 ¥ y) 4 7+ 20
subject to the end condibio;’ié

x =) % = 0-4
y3=0 y =05

The equatiost\ﬁ'rst written in the form

d' ‘
G — [ + 2logo( + y) + 2% + 2]

:"\:'_y__
'\'\\“" dx ®

:"\Beginning with (%) = 1, the first solution is found, and
\¥ °

following this the solution for (j—g) = 1-2,
1}

Interpolating from these two solutions, the third solution
is found with (%) = 1-322. The result is to give the
a

reguired solution correct to approximately ;14 everywhere.
The solutions obtained are tabulated helow,
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[ . | o ‘ 01, 02, 0-3. 04
2y oo | _o-243 | —0-616 | —0-821 | —1.158
o 12y | o _0-244 | —0521 | —0-836 | —1-189

(3 | o —(-2446 | —0-5243 | —0:8456 | —1-2002
dy |1 0-988 | 0-950 0-883 0780
w2 12 1-881 111500 | 10835 | 0-9834
(31 | 1-3220 13101 12719 | 1-2088 | 11014
y (1) ‘ 0 | 00094 | 01963 | 02879 | 03711 I\
@2l o 01196 | 0-2368 | 03488 |  0-4524
RCE \ 01318 | 0-2611 | 03852 |  0-5007 4
i H € N\
S

17.1. Te obiain a more accurate solution of the foregomg

differential equations. ¢

R4
It is proposed to use the sequence \;
(A%, lasy = By "+ v 1l
to improve the accuracy of the solut}oh of the equation

— - Y.
dx2 2\/(6 v)
already integrated above.

Referring to the tab1e~ ‘of values of ¥’ on p. 166, and
quoted again below,\

Ay, <= 001 — 1-802 + & X — 0:007]
K\ 0-018026.

In a Simiia;r manner the table below is completed.

o ]
N A Al Ay,
RS —
1 —1802 198 _ o | _oo1826 | x 4= —0072104
—1-611 1ot _10 | —0-016118 | X 3= — 0-048354
~—1:430 o ~11 | —0-014309 | X 2= — -028618
—1-260 17 15 | —oor2618 | x 1= — 0012613
TV B Total  0-161689
R R T SR B
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Since the values of A% have all been determined, it
remains to insert one value of Ay, and the table may be
completed. In general, it is better to insert this value at
the centre of the range, and, by using it, build up the com-
plete table of values as linear funetions of this entry. Now
make the solation satisfy the end conditions, and the value
of Ay inserted may be caleulated. Let Ay, =k then in
this manner it may readily be seen that

=3 X (0°25 4 0-181689). See above tahle.
— 0-082338.

The new table of values of ¥ is thereforg 0

I Ay, IJI .

¥ ¥ J a )

0 -2 A7 | o ‘
19,783 \

-082888 | —1-80217 16,15 — HANENS 5y —(-018027 | G-0823288

| 5 AN\ !
0-1466850 | — 161082 18'13 =M = 834 1 —p.016127 i 1466462
: 4 1N
G-194844 | —~1-49048 16’ 20 JW4et = — 1008 | ~p-014205 | 01048348
2 NN

0228728 | —1.28018 & M4 = — 1185 | —0-012614 | 02287204

15,2080N3 !

0250001 | —1-10522 ~N ’ | 2500000
- "

From the above table of values of y the values of y/ are
recaleulated and ‘A is again determined, and the table of
¥’s is built Bp as already described. The values are incor-
porated invthe table, and from these results the final values
of y are détermined correct to five significant figures. It
should (be noticed that the above more accurate sequence
me{l’;ed is only applied after the solution has been determined
bose degree of accuracy which justifies its use, and is de-

o~seribed here ag especially applicable to equations of this
“ype. If a more accurate solution of the second example

is desired, the sequence method is used, but the integrations
are carried out by a different process, such as have been
desc?lbed, and the bounda.ry conditions are satisfied by

limiting value as the solution becomes more aceurate,
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The case of linear differential equations.

In the case of linear differential equations of any order
the difficuify already referred to, regarding the terminal
conditions when these refer to points further apart than the
legitimate range of integration, can be avoided in a very
simple manner. The method is quite general, but may be
illustrated without any real restriction by the case of a/
linear equation of the second order, viz. N

(NN

gi% + P(x)gg ey =0 . . .y

N
N

Let the terminal conditions be of the form A

L1|:3/1s Ya . . . (%Dl’ (%)2 .- ]5\0\ . B

) dyy (i \j —

'thyl? Yo+ - - (&Tv)l: (ﬁ)x\’\ =0. . (3
two relations connecting the ordinates and differential
coefficients at a finite series of positions.

By any of the methods alrgady developed determine any
two numerical solutions of (1) covering at least the whole
range of 2 involved in 42)4nd (3), and subject fo any simple

terminal condition\gf;:a\for example, x =0, y =1, fl—?:: =0,
and z = ©, yz—:k g% — }., Then, if these be
AS
PAY; y=u and y=2,
any etlisr”solution of (1) from the general theory of linear
dit‘fgx’§£ia1 equations may be written
N y = Au + B,

“\¥here 4 and B are definite constants to be determined.
Both these constants can immediately be found from
conditions (2) and (3), for each of the numbers

v @@,

as linear functions of 4 and B,

are eit icitly or
ither known explicitly two relations to

and consequently (2) and (3) provide
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determine 4 and B. When the relations (2) and {3} are
lincar in the elements A4 and B, the final solution wil be
unique.

73.2. A sequence method applicable over a 'wide range to
equations of the type

N\
a2
Tt H(o ) = 0 O
o)\
subjectto & =z, y=1y,; o - Ty, Y = ¥, D

If (z,, 2,) be greater than the range of cpﬁ:rer:genee of the
sequence method which hag heen described, there does not
appear to be any simple modification \of the procoss that
will enable the solution to be consthc’tcd. It is eminently
desirable for practical purposes that a process he derived
which will lead to a solution subject to the given boundary
conditions, and whose convergence is independent of the
range {x, x,). Ny

Consider the equation3®

¢

m<“3%+ Wz, y) =0 ., . | (1}
and let the sal\xf@ir}n be required to satisfy the conditions
m::..mz{),y:—.a;x:l,y:b N ¢4
Writing™4) in the form
0Ty oy g g

i h‘}aiﬂerentia-l equation ig directly transformable inta the
Sumtegral equation
AN

T

\"\ y:Asinnx—f—Bcosnx—]— nL dify — $(t, y)]sin n{t—z} (3)

where 4 and B are arhitrary constants,
To satisfy conditiong (2) we require

!

4 sin nl=p — ~ — ¢l sin n{t—

sn; & 608 Rl njodt[y #] 8in n(t Z)}_ (4)
=1



OF THE SECOND AND HIGHER ORDERS

and (3} takes the form

_bsinnx L asin (] — )

sin nl
nsinnfx —) =
+ fo dt sin nify — 4)
% sin ne 1 .
Shinl ) dEsmu— by —g) . 5

Consider the sequence

b8 nr - @ sin (I —
Yrop = — ——L— (———)

sinnl
L e sin iy — ) = ) O
7t 8In na (2 . N
+ Sl ), @5 nlt — Uiy, — 4 )

171

N/

{6)

It is clear that at each stage ¥,, , sa.tisﬁé\s:}}he conditions

=40, ¥,y =ua; x=§,~‘yr+1=6-

AN
N

Let «,, 1= ¥y ~ ¥, €=y, — %, ~. ., where o is defined

by the integral equation (5), then, from (5) and (6),

? &Ny
&+1= — % sin fnxj dt e,[l'—'@—;) ] cos nt
z P
— 7% CO8 nx :dt,\e,lil - (g—;) }sin 7t
0"': ‘u

+ cot ','2,5“ sin ne fﬂ l dt e,.[l — (gﬁ)

B

]sin nt .

(7)

Provided ¢ ig @::Sfixt-inuous over the range (y, y) and (2$/0y},
1S a value of 3¢5y at some value of ¥ in that range for each

value of \ph.)
o} 0)\5(,

n\ e

Jo(z) = e,.[l — (g—;)ﬁj;

(8)

\fgéﬁ':since Yrir=y at 2 =0 and =1, ¢ =0 at these
P

ints, and, therefore, if 36,3y is finite,
JA0) =0 and J,{)=0.

Let there he 4 finite number p of maxima and minima in

J,(x) between ¥ = 0 and & = ocourring at
=z (t=12...,p),

N
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then in the successive ranges

(0, 29), (2ps ) .« . . (x,, o), (@ 24 . ., (zp, 1),

J-(x) is monotonic.
Consider the first integral in the expression for ¢, ,, viz.

i
E = [ 7,(t) cos nt dt A

T4y T+ oA,
:j +H U+ O
* Tty :-‘-‘p\\ “
- - - - - b 3 \ -
Since J,(f) is monotonic within each one of,j{he successive
ranges, e\

r 4
&/
\ \\

nK = J (x)[sin n§, — sin 1] O
. + 7o w)[sin L,y - Bk né,]
+ Jolo s )sin néy — sin @y,
FVh (2, o)[sin me,  — sin né,]
+ . :;’ v
+ Jo {2, )[sin nép 51 — sin na,]
) + Ji(0)sin #l — sin Pépss1h
Where A~ a“é’i;—l < §s < x;_'_“

P (N
Stmilarly, fop$he second integral in the expression for
€ 1, ViZ. N\
P \ 1
I = j J, (8} sin nf dt
4

P,
¢ 0+x1+...+z‘.

N . o
”.‘}since Ji(t) is monotonic within the range of each sub-
S Integral,

ali = J{0)1 — cos "] + oz )[cos ny, — cos na,
+ oz, eos RTy — co8 Ny,]
+ Ji(zs)eos ny, — cos nay]

+ . .
+ Ji(#z)cos nz, — cos N7y 1]
+ J{#)cos ny,, ; — cos nxl,

where T >, >,
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If M be the greatest absolute value of J,(x) which can
oceur in the range (0, 7), it follows that

2K sin ne + nl cos nz| < M(2p + 1).

In the same manner it will readily be seen that the third
integral in the expression for €11 18 less than 2p M,

Hence N\
el <Meptatoy L)
where A=|eotnll . . . . . (IQ) N
. . ¢ A Dl
Bince J,(x) = e,.[l — (53}),“]’ from the deﬁmtltzil???f M, it
follows thas A\
9%
H<afi-gl o3

o\
where ¢’ iz the maximum value of‘.e,.\ﬁha-t occurs in the
range (0, i}, )

Thus from (9), o)

N/
~
<N
X

: ' d ™R :“
!€f+ 1] < €y [I — a—g’!:ﬂ:“ {]. + 2}3(1 + A)},

where |, . .| is, of course, s function of z.
In particnlar therefopé;;\

RN
iy <e,11 - g_;,m. {1+ 2p(1 + A},

L

~C oy '
'"\’;”f’\e; < el'J' - .ai; 2+ N,
Boice ., ' < o1 + 2901 + A)}f' “%L RN ¢4}
all the numbers involved being positive.
Provided {1 4 2p(1 + A)}(] __gigf <1, (12)

AT,

there exists a number p, such that for r Z Py s s a'ntd z
fom‘ori‘ 41| can be made less than any given positiv
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numher, howevar small, no matter what {linite) quantity
€' (i.e. what finitc funetion of ¥, €) may be. Henee the
sequence {6) converges, provided

1 3:,‘15 . ___]'__ L
TR BOEn g <t rrgro g o 1)

within the range (0, f). In this condition the otly nuthber
explicitly involving 7 is } — [ cot ni |, and with {his aveshall
deal presently, RAY.

Differentiate the sequence (6) twice with rédspoct to z,
then \

7%
< 3

d2y,
Sty oy, sl . oy
Ly, ’
i.e. ‘—3‘;72—1 + 2%z, g, 1) AN
= nfy, — Yriq — Q&(xg\?}r) + d(e, Yra1)]
_ :‘.“agﬁ | -
= ?1.2(5,, — e?-l- 1)’[3 Nos = ('a—)v_l . N . (13)

where (3¢2y), is g valadof 24/2y at a valee of y inter-
mediate between y, and Yrs 1> and is thereforo finite. Hence
from (11) and (13)@wnumber ¢ can be found, such that for
¥ > o the rjghtjlzmhd side of (15} can be made less than any
given positivéAninber 7, however small. Hence the value
of ¥ derivedMrom the Sequence (6) can be made to upproach
the solutignof the differential equation

\y' 35+%W%w=0. .. (D)
O\ ,
ey desired degree of closeness, and satisfy the boundary
“conditions

TEOYy=a,0=1y4.-

It remaing to consider how far
the range, a5 implieq by (13,

Consider the differentia] equation

dz’; L3
ety =0 . . . e

the convergence depends on
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This may be written in the form

d? :
@?éﬂL“g}d_iﬁg):O’ S e 4

where n is arbitrary. Condition (13) then states that the
present method of solution will cert&mly be valid, if M and
m bemg the maximum and minimum values (positive) of
dy2y which ean occur in the range, it iz possible to find‘a
real sumber » such that

o'\”\
2 n sy
M <n +1 + 2p(1 + [cotnl]) ° (5.’.’;.( )
T
a _. ¢ &
" T T T e Teotaip - (19

2 being some unknown positive integer.

In practice, none of the numbers in (I‘S) and (19), except
I, are known exactly ; but M and np¢ant usually be estimated
rgughly, and a suitable value of % selected intermediate
between /M and +/m. Morenver the range of variation
of By permissible may hetin point of fact much greater
than that specified by (18) and (19), which are merely con-
ditions sufficient to sensure convergence. For reasons
apparent, however, mﬂ'om these conditions, care must be
taken to avoid ¢ OQSmg 7 in the immediate neighhourhood
of smil, where s an integer. If it is convenient to choose
w = (28 |- )m-/2l the sequence solution for (1), convergent
over the 1}{1016 range takes the simpler form

Yo Af— 1) sin (25 + 1)57 + a cos (25 + 1)37

2 bie]
A (20 25[ (2s 4 I)wxj iy, — b, yr”cos%

" 4 con (25 + 1 [atty, — g, y1sin 5] a0y

and (4) becomes

2 —|—])2'n' —
di@;+(s4£2 da,y) =0 . . (21)
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For practical eonvenience in caleulation it is better to use
the sequence (6) in the form

Yoiy = A, 8N nx + a cos nx

+ % sin n jﬂxdt[y, — (¢, #,)] cos nt

— 7 608 m:} dify, — J(t, %,)] sin nt, ~
L]
b — acosnl t N
= - r » r 3 3 t
where 4, — emal njo di[y, — (¢, y,)] cos D)

I '\
-+ # cot ?djﬂ aty, — 'gfggg,‘y,)] sin nd,

The two integrals in the expression for Yr . 1040 be evaluated
graphically or arithmetically for any appioximate aoluti(?n
Y, and in doing so, the evaluation of blte two integrals in
the expression for 4, is incidentally a¢tomplished. _

It may be remarked that the samemethod may be applied,
subject to corresponding restrictions, to equations of the type

d N d
i ) =,
and even to equations ‘of *higher order. _

In the simpler cade) where the boundary conditions refer
to one point only{the process here explained may be applied

with equal suceess.
Let the differential equation be

¥ d
O Ez:_str ey =0 . . . ()
sub\jéc”z\ﬁ“to, the conditions
& . _ dy .
x-—O, y—--A, EIL'_B‘

Yrs1 =4 cos nx 4 B sin nx

=+ n sin ny F cos nily, — $(t, y,)]dt
0

— 7 C0S Nz ]:sin iy, — St y )t . (22)

4 and B being now given constants.
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\ }"”;}s = J(xy)[cos n{x — £3) — cos n{x — 3]
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7

e note that when
x:O, yr+1:A, and %:B

As before, defining ¥ by equation (22}, when ¥ has been
sabstituted for y,,, and y,, we have

: e,[l —_ (%g) ] cos nt df

£,y = T8I m:}
1

— 7 COS mf e,[l — (2_4_5) ] sip.ngjdt

Y'u

3

wirere (0¢;0y), is the value of o¢/dy at some y@lﬁé’ of y
intermediate between y and g, for each value of$.

W/

Thus ¢, =mn [ " J(8) sin nlz — D
1}

Iwhere J(x) = E,.[l — (%}}\

since €, , = 0 when z = 0, J,(Q)'= 0.
Let the successive maximasdnd minima of J,(x) occur at
Zy, %5 . . . ¥p; Je{x) is m@hotonic in the ranges (0, z,},

(e 2}, . - o (2 @) X
Therefore e,y = nflp+ L+ . - -+ I, + 1],
where \\
al,=n ] z‘J{(fi)"éin n{x — t)dt
2N ”é 2,
= 2J26) fo 'sin 0z — Odt + a2, js “sin n(@ — )it

ez )[cos n(z — ;) — cos n(x — &))]

31\@: J(2,)[cos n(z — &) — eos n(x — #4)]

+ T ()8 nz — x) — 0o n(z — £)]
+ J (z3)cos nx — 75) — 008 n(x — &3)]

nd, =. Tl lo)[cos n(a; — &) _ cos n(x — Tp_1)]
+ Jy(x)[cos n{z — xp) — €08 n(x — &)1

nl, = J{a,)[cos n(x — £pyq) — €08 R(T — Tp)]
+ J,{w)[1 — cos n{x — Ep+1)]
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Hence if M be the maximuam absolute valne of Jo(x)
which can oceur in the range (0, x)

| €aq| < 2M(p 4 1).
Now since J{x) = er[l — ("S—q!)) ],

Y n
it follows as before that O\

, B | n -
i1 <2p 4 1)e, {1 _ (g)ll : O

max, :’\

fonee o <20+ 1)qy|1 24| A

Ly 2N\ g
€& < 2p + e, 1 % v/

Yy m&
Thus «,, < 2"(p + 1)*11 — a—ﬂr\\el - .. {23)
" b,
where ¢, is the maximum abst{lu%e value of ¢, that oceurs
in the range (0, x). N
™
Hence provided 2(p +1)} 1 — 2%5] <1 . . (29)

ey,

there exists g qua,l@i'ty p such that for » ~ P €., can be
made less than (any assigned positive number, however
small, no matferswhat (finite) value ¢’ may have.

It fo]Jowg that, subject to the restriction (24), the sequence
(22) converges. I converges, moreover, to the solution of
equation\(l), for from (22)

\ ¥/ dE et
..s'\\ dx?;( = 7%, , 1+ nPy, — n¥g(x, y,).
Thus
&_;_E?Ll + n¥(x, Yrsi1)
= nz[gﬁ(x, Yri) — ¢(x: ¥) — Yrrq -1~ 9]
= n2(5f+1 — 6;)[(%) — 1] - .. (25)

where (34,9y), is the value of /5y at some value of ¥
and g, for each value of .
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Froimn (24}, 8¢/6y — 1 always remains finite, and from
{23) <., ; — ¢ can be diminished without limit by suitably
increasing v, Hence y,, ,, as derived from the sequence (22},
can be made to approach as closely as we require to the
solution of

d? 9
@3’; Lot =0 . . . . (4)
dy _ \
.'I.':O’ ] :A, (_l'ré-_B' '.\"'\

'\
There is no restriction on the range of validify of this
sequence other than that implied by the ineguality (24).
This is equivalent to the requirement that 5@}83; shall be
positive, and \/
1 dé 1
T ara 1 11 - < ]' v 1
R R TR (Y
P> 0‘: ‘t v
This condition, it should be,nfit-ed, is independent of the
number w2 o
It the equation for soldtion is
2%
Ade
N _ .
the condition jmerely requires that a quantity = shall be

chosen, sueh(Phat

—+ x{z. y) =0,

) g n2 ]
o0 M e T

O .
"\ m > nt — 2(_2]?1)}

""fv;here M and m arc the maximum and minimum values of
\ :E}x fdy in the range over which the solution is required. M
and m can msually be estimated roughly at the commence-
ment of the operation and a value of n? chosen I¥11dway
between them. Should it appear, after the integration has
been effected over a portion of the range required, tha:t.the
values of 4 are such as to canse & violation of the conditions
(26), an adjusted value of n may be adopted from that

(26)

"
2 &
o
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point onwards, and by this process the integration may be
effected over as wide a range as desired, provided only that
¢x/éy remains positive.

4 similar process may, of course, be adopted for the
solution of the equation

Hrdeng)=o

and, indeed, the whole method is capable of simple extensmg
to differential equations of higher order.

Frample.—The following numerical example w:ll pro-
vide a fair indication of the rapidity of convergence of the
sequence and the amount of labour mvolved Lgxarmvmg at

a solution.

j;f’; + (0-98 4- we~107)y =00

o\
=0 y=10; x:ﬁ/ﬁ, y = 1.

Taking n = 1 the sequence sqlpﬁipﬁ is
¥riy = A, sinz + sinw f:yit)()iz — 11 cos £ df
— go%;:u; f:y,(O-OE — {e~19%) 5in ¢ dt,
A= 1~—\j;;my,(0-02 — 2e71%) cos ¢ di.

The first; approx1mat10n is taken as ¥, = sin z, tabulated
on p. 180¢ Ho two places of decimals only. The two integrals
in ¥, Oy “were evaluated graphically by means of a plani-
meter, A, being determined incidentally in the course of
evaluating the first integral. It is to be moted that the
“\gécond and third approximations g, and y, agree to four
places, and therefore represent the solution to the degree
of aceuracy obtainable by means of a planimeter.
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CHAPTER VI

SPECIAL METHODS APPLICARLE TO LINEAR
DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER N

A,

18. Use of some properties of second order lincar eqlgations to
derive any numerical solution from a pariiculat®™tabulated
solution. .

13.1. Numerical reduction to Normal Form; Methae\.

18.2. Numerical roduction to Norma] Form; Mcthdd 11

19, General theorems on upper and lower bHounids to the solution
of " + ofx) y = 0.

20. Approximate soltions for the casesswhere glx) is expressed
a3 (a) series in ascending powars,\\(b) geries in desconding
powers, (c) Fourier serios, {d) serie¥ of oxponentials,

21.  Differential equations involving an' unspecified small constant.

22. Differentisl equations involving an unspecified large constant.

IN the previous chapters the methods of numerical
solution that have been ©explained are in the main applic-
able to differential equétions of any order and of all types.
Many problems in athematical physics, however, depend
for their solution én)differential equations of a much sinipler
kind, Thig arises from the fact that in seeking for special
forms of soltfion of the partial differential equations of
mathemapica! physics, the Possibility of finding such solu-
tions tutny usually on the discovery of solutions of certain
types_of Ordinary Linear Differential Equations of the
sep0nd order, Among such types may be cited, for example,

ihe equations of Bessel, Legendre, Hill, Mathieu, and

mden. It is not the burpose of this chapter to discuss
the general properties of the solutions of such equations,
for each of these would Occupy a volume in itself. We
restrict ourselves rather to suoh general properties of dif-
ferential equations of the second order as may assist us in.

arriving at a numerical solution by the easiest and most
direct route,
182
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We begin by showing that where any tabulated sclution
4 = ¥, has already been found to any such egquation,
any other solution may be immediately derived by a
straightforward process of numerical integration.

18, Properties of Linear Differential Equations of the Second

Order.
Consider the cquation
¢\
Y+ PP Qe =R .
and let y =y, he any solution of the cquatlom ity which
f(x) is absent. Then RS
a2y, dy }
dixy?l—r Pz) 1+Q(x)?/1:0

Multiplying these two cquations by qk,a}nd y, respectively,
and subtracting

dy 4% il o dy
(v T Y d;;:le) +1 (33)(&’1‘5 ~ %) = B,
or df dy  dy dy _ %
dz (yl dx ¥ dx1> ‘[—*P(x)(J1d Yy dx) E(x)y,.
This is a linear d}ﬁ‘&rentlal equation of the first order in

¥y gz y(;y 1 an}k\ its integrating factor is e'r. It

follows that, {
(gl\f—?’!— Ji?il>el"dz = 4 —|—j R(zx) . 4,87 d,

N d
or N ) el = A [ Bayetre e,

MG)r
'z da
y;y —-Aj Im dx + IP U Rix) . yef‘“"’dx]dm + B.
o]

Tt follows that if any solutlon y =y, of the differential
equation (1) be determined when R = 0, the two funda-
mental solutions of (1) may be taken as

7o ]rizgy
y =y and y—yl[ PRI
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and the particular integral is

T —-de:r z —[
e .
¥= ?11]0 —yl-z—“U R{x)y el g, Ic?..r.

Numerieally, therefore, the original difforentia equation
may be completely solved in al} cases where integrals exist,
for by the methods already developed a solution ) :—-\y1
can be derived o any required degree of aecuracy sand the
determination of the remaining expressions invohrésﬁothing
more than the tabulation of simple numerica™unetions,
and their numerical integration. For the cj_g.étfé’_i’qnination of
any special solution or gerjes of soluti011§sa‘¢tfsf}“illg given
terminal_ conditions, the methods alreddy developed may
then be immediately applied. \
H the equation is in the N orma{@fm (sec § 18.1.)

dz { }
75+ H(z)grs= 8(z)

the two fundamenta) integliaié are

=~ NV, z@i
¥ =y ¥a =y, o 7.2

and the partieu!q.f:mtegral is
¢ \"

X _ * el { = ]

¥ yljo 912 —[O S(x)yldx ’

AS

Ihe cg@p‘lete' solution ¢ap thus be derived from any par-
ticular Mumerica] solution g — ¥1 by three integrations.

“the special case where Sz) = 0, the solution takes

the form
¢ .\’: 3 T dx
ws\’ " = A B -
@) Yy Y1+ s v,

If the bounda;ry conditions are

=0, y = y(0); z =z,
¥ = y(x,) then = o

A= 30)/1(0); B — Y0 (0) — y0)y, ()
% dx
¥:(0) J %
(U
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In the following example the equation to be solved is
¥ — 2(1 + 227y = o,
subject to three different sets of boundary conditions. Tt
is assumed that « solution has already been found by any
of the earlier toethods, and this is tabulated in column I.
The following tulde should then be self explanatory.
Ezample, _ R
¥’ — 2(1 + 2%y =0, ,\"\z‘

Nov

To find solutions with end conditions

e=0y: 1 ()z=0,y=1 (i)z=0 g1
m:—é‘y;—_] :]}y:l xny‘.w?\\y_}o
Y, tabulated below, alre:

one solution y - ady }ia,ﬂ'ng been

fovad. 7\
The general solution is O
— AY + BY f' g
y +~ ),’" il Y2
e ... R |
i ol : ] i
! RN b g 3
. . . iz, rdz] & z &
Yoo i AFi zurf i o2 2 &
| A ol s g
I 4
| &\ N b b By
-
04} 1 . N 0 o 1-Go00¢ | 1-60000 | 1-00000
01 301005 4.uawlin | (-000337 0100335 | (-05817 | 0-90402 ”:?_%33;
021 LOMOR] ulods11s | 0-194702 0-202741 | 093508 | 4-82655 P).mom
08| 100a17 Phssaerr | 0282031 0-209575 | 093410 0‘7“?01 0-40725
§ | 11795l KpNeing o 0861156 | 0423797 | 095430 | 07258 040764
0:5 1284080 0 00sn28 | 0427812 549323 | 1-00000 0-703553 hvibed
§| Lsgmaald ousnrsn | 0482435 | 0-69140 | 107580 | 07D 1| 626384
b7 Tode  0umsaug | 05ghads | oanrey | 11888 | DUOL DR
0-8 48 (27RO4R | D-B5T0TH 105810 | 134034 0‘76620 0-16164
18| %&2a7er . wlaveas | o-nlezs | 180744 | D710 O 50000 | 012309
I ONETIS2E | g luaans | 05oA14d | 16202 | 187760 1 1UODOO | OUBS
pon® 338348 pomsuzy | 0-60923z | 204805 | 220m12 | 1AM Deon
sidgt  B22070 | 0ppétas | 0016385 | 260157 | 287556 05052
Ya | 54948 - pa34na7 | 0620815 3-36440 0-03628
NI | D093 i nargsil | 0-823455 | 442811 0-02662
i 04874 | Ogi e | 0824085 50295 001777
17| 128858 | ooonove | 0-625706 | 80952 00121
16| L8933 wugaoo | 0-626235 | 112680 0-0081
19| 228387 ) genainyd | 0626458 | 159958 0-0084
2] 280001 | nonuras | o-628566 | 231617 0-0636
21 BEOUN2 | gonoaas | o-g26e17 | 342122 0-0022
53 | (322606 | 0000138 | 0-626840 | 515534 {o-o01d)
23 | 100470 § i-u0ouss | o-6266s0 | 79252 {0-000%)
gq | 39834 | qonges | 0-c2665s | 124993 (00004}
2.5 2”'343 HOBOOTE | 0626658 | 108-868 {0-000L)
ig | a®05 | o-gnoons | 0-628857 | 324818 {0-6000)
gy | Y0264 OHOOL | (620657 | 540-48
L-..__\‘_‘__ LRI | G2E857 o
L [ B S
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For each solution
4= y(0), B =) = Aulz,)

%o ol
y{xo) 0 o
Thus here 4 = 1 in all cases, Hence it follows that
. I — 128403
(l} = m—— = - 0'51705, ...\
. I — 271828 .~ _ A »
) B=-—-="""°% _ __ 10536805, A\
1-62592 A~ N
(i) B = — 1/0-626657 = — 1-59577, g W
These values of 4 and B enable the soluti,f)ﬂgi in the last
three columns to be tabulated. (v

In the foregoing example the equat-id;is in the Normal
Form. Every linear differential equation of the second
order may be transformed to thi 't-ﬁ)e by a simple change
of dependent or independent V%Bi;]&

Transforming linear equations of the second order into
Normal Form, N

<

18.1. Method L—The edaiation

&, dy _
e 2 T P&_x+ Qy=0

N\
may be thrown®into the normal form by a change of de-
pendent variable, For example, let y = wup, where v is the

new de e};\dént variable and # is some function of z to be
dete;:ggi led. Then

\'\\w {Ey: @ H d_’b}

A\ dx™ Y@ TV,
A Py dy du dy AL
Q~ @ gt i e

On i i ions dy %Y into the
I inserting these expressions fop 2, and Jp2 into

original equation, it takes the form
v | dvf_ du d%u du
“ G gt Pu) + o+ PRy Q) =o.

X
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Now let % be chosen to ensure that
du
i.€. 2% == ¢ t/Pds

1f this valuo be inserted in the transformed equation, the
latter becomes

1dP 1 )
whare P(x} = Q —_ 5 % —_ a:_P2 \\' A
Consider the equation ¢ ‘
d? d O
Tt =0

which has already been integrated numetitally on p. 145
by resolving the equation into two sipfdltaneous equations
of the first order. o)

If 9 == e .
then plz) = — 6 =B\ 302
== ‘l*gi:‘.:—; 2222.
The required solution of thwé;diﬁerential equation is
y——\“\v , g
subject to x = q,%\; 01,y = L.

Hence » is tg\f)’é"%he solution of the equation

x:\"’ 2
M az?

N

O d
thq.ﬁ:i}, subject to x = 0, ~-£ = 1-6,v=1

oS . ) .
“\“This transformation is particularly suited to this type of
\équation provided the values of y only are required and not

= }(30 4+ 9%

the values of %g {see p. 154).

Example,—Tabulate the solution of the differential equation

2 d
%4—%%—63;:0
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suhbject to 2= 0, g—g =01, ¥ =1 at intervals of 0-1 in = in the range

0 <@ < 1 correct to four decimal places by transforming to normal
form and using the method on p. 154.

This transformation is usually assumed to be applicabla
only to equations in which the coefficients P and Q are
functions expressed literally in terms of the independent
variable 2. This is, of course, not necessarily the\case.
The functions P and @ may be presented in tabyfadyform,
and p(x) can then be calculated also in the samé $orm once

L ¥

dP . £
Em has been numerically evaluated. A
9 {"
QP o)
For the determination of T either the forgwila

o' = A + AF ] — HlAY, + Affrﬁﬁfﬁ[‘ﬁsf—z + Al 4
or the central difference formula \ ‘*\

By = udfy — BudYaF Jusfs — . .
may be used. \

e
NS

Example.—In the equation
NPy - Qy =0
P and @ are ta.l&h}m‘/ed as follows

£ S

N 1 :
% .0."\]0‘-1 02 |02 {02 (05 |96 |07 |o-s ‘u-s |10 ‘

P D01 0-0091 0-8333( 0-7602] 0-7143( 0-6667) 0-6250 05882, 0-5550| 05263 0-5000

[Q\:.:}d-?suo 0:7034| 0-3264| 0-8521| 0-8724| 0-2889| F023 u-gla.afl 0-022810-9307| 0-9575

o | |
N

2\ Tabulate the function p(z} in the equation
A

a4
a? + P(m)'v = 07 )
T
-3l ra
where ¥ = ve ifo i

18.2. Method II.—Any equation of the form
¥ +Py +Qy=0
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where P and @ are functions of x can be reduced to the
standard form
¥+ plly =0
by & change of independent variable.
Change the independent variable # to z—thus

dy dy r‘ dzy fgdy+dy I

dx Szt 7 dzt N
The equation then transforms to L)\’
dyzf:+ z”—]—P’ +Q3/_"0 ’\,,\
The term in gig may be made o vanish ifm'\{f
2+ P =0 \

ie. if o= e IPE N
or 2z = f I3 336

The normal form is then A+

dy

dzg+62 Yl y = 0

where Qe?l?% which is@ function of z, has to be replaced by
its equivalent function of z by using the relation

L\ feireds.

N
L >

Examplg,%ﬁgduction of the equation
e ¥+ Py +Qy=0
to noﬁ&n‘al form, Where P(z) and Q(x) are given by

o1 0-2 0-3 04 -5 o6 o7 0-8 09 1-0
-2 o4 a6 -8 16 1.2 174 1-8 1-8 20

12 1-4 18 1-8 2:0 2-2 24 26 28 5a
|

The numerical process is clearly outlined in the table
below, the new equation being

M o =o.




O In Chapter I we considered a number of compari-
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Fde . . . . 0 o001 0-04 069 016 030
0
£ ;
exp. 2f Pdr . . . 1 1-0202 | 10833 | 11980 | 1377 L6480
T .
ol -Qexp.zf Pir. . 1 12242 | 15186 | 1-0168 | 24754 | 3 2880
o -
x - ™\
exp.—f P.dz. . . 1 0-0900 | 09608 | 0-0130 | 0-8321 | oRehy
Q N
T z | “ “.\
g f {exp. — j Pdayde . 0 6997 | 0-1072 ] 0-2910 : :}3{9& 4012
0 0 — T S
! | N
T
" ,\
f Pdz . . . .| ose 049 0-84 083 10
o
: o T
exp, 2f Pdr . . .| 2054 | 865 {5915 5054 | 738y
0 N
-
of] = Fexm 2f Pdz. .| $5188 | G300 0-3406 14,1512 (22367
i} ®)
&I "Bl v
eXD.——fP.dx. . .| 06099y 0-6127 | 05272 | 0-4448 | D-36TH
[
T T R I
z=j(ex1:--—fm:c)dz ~\| OB360 | 08000 | 0-6570 | 07050 L (7468
n (il ...\ |
28 )
'\\ )

N

19. Furtheér General Theorems dealing with the solutions of
[réquations of the type

N

d
T+ by = 0.

&

son theorems which enabled us to set upper and lower
bounds within which the solution of a differential equation
of the first order lies. The theorems that follow arc rather
akin to these, and suggest corresponding bounds to the
solutions of differential equations of the second order. At
the same time, they provide a valuable insight into certain
general properties of such solutions, linking them up with
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the simple properties of the sine and cosine solutions of
the elementary periodic equation

y' +y=0
Let p(x) be positive in the range
so that 0O<m=<plr) < M
m and M being the upper and lower bounds of f(z) in the( ™
range. \s\.
191, Theorem L—Let y =y, and y = y, be tw& Jinde-
pendent solutions of the equation ’ : N
y' +pEy =0 . \‘ .
Ther. between every two zeros of y; therg niust be at least
one zero of g, Ve \d
Tor L T S
¥ + p(z)ye 0
therefore Yoz — y,g =0 . . . . (i)
letz=¢andx =1y bej;vmzeros of ¥y = ¥
Integrating (iii) .~
gy\'éz — iy =4,
therefore [3/ 1@2 (x) — ya(2)yy (z)]i= 0
and
[#1(n yz{n) — yz(n)yl ()] — [11(E)we (&) — 32l ()] = 0.
Sm&e y (&) = 0 and yy(3) = 0
thelﬁ ore %.(6) . 9/ (6) — %) -9/ (0) = 0 . . ()

) Assume that y,{z) is + ve between 2 = ¢ and z =,
\ ‘therefore yy'(€) > 0 and y,'(n) <0

From (iv) gs(n) = yzg)y(l)@mlfg (€) is -+ ve

and > 0 if y,(£) is — ve
Thus yo(y) is — ve if yu(€) Is + ve
and Ja(n) is + ve if gul6) s — ve.
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() therefore changes sign between the two zeros z = ¢
and x = 5 of y,(z).

Thus there must be 1, 3, 5, . . . zeros of ¥z(x} between
two consecutive zeros of y,(x).

It follows that if any one solution of y" +- Py =0
crosses and recrosses the axis of x, so also does every other
solution, and each such solution interlaces with every othen
An elementary illustration is A
¥ +y=0y,=sina, g, =cosz. s\

Example.—B8how that each member of the systgtﬁl, of curves
T "
y=de*cosx(l + B L e® soct x dx), where A a,m{B’ ard arbitrary

constants, has an infinite number of zeros, andythat the zeros of
any one memher separate the zeros of any other.

X'\ d
19.2. Theorem II.—Tf in the diffefential equations
¥+ ey =00\ 4
2" 4 agx)z =0\ .. B} e
M = o{x) = p(2) in the rafige b > x > q, and if y =2z and
¥ =z at @ = 2, in the® j'ange, then equation {4) has the
greater integral, throwshout the range b >z >z,
Let y(x) and z(w} \both commence at the common zero
¥ = Xy at whichalso let y'(zy) = 2'(z,).
By multiplying the equations A and B by z and y and
subtr&cting.\“ 5
SOT W —y—o—ppe . . . (¥)

&l?f!\\Qéﬁhée Yi—y~ j (6 —p).yz.dx . . (vil)
the ‘constant vanishing.

() "Since ¢ — p ig + ve, if ¥ and z are both - ve

Y
) 3

¥z2—2y >0
hence Wz —2y)2 >0
d (y

Thus y/z is an increasing function and y > z for » > z,
up to the next zero.

It may therefore be deduced that the zeros of the integral
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of the differential equation with the larger y-coefficient
must He closer than those of the equation with the smaller
y-cocificient.

12.3. Theorem III.—Comparison of the solution of
¥ + plzly =0
with g A2 =0
where at @ = %,y = z == 0 and 2,/ = ¥,".
Clearly 2z = A sin Mz — %) = (yy'/A) sl Az — xu).\' \)
Suppose that 0 <m < p < M in the interval & <.:s < b

{ompearing y" + plely = 0} N
with 2’ + Mz=0 \\

AN\

by the previous theorem the selution of
Y+ plely =000
with the given boundary conditioqs,is‘grea.ter than that of
7+ Mz =-—f.0.x
Therefore y > (v’ v/ M) 3/ (M) — %)
up fo the zero value of ¥ nézbafter that given by X = Xo,
i.. up to that given by Zp+ w4/ M, unless b <%+ mi/ M,
in which case only up't¢ the valuex = b.
Thus the nex‘t\i:éi-; x, of y must be greater than
Zp, :—[—wrj»\/M, 8. Ty — g = /M.
%1111113,{13',\ (;omp&ring the two following equations
G

¢ g’ A pleyy =90
X Sl

.\it.:ﬁlay be shown that ¥ < (¥'o/v/™) s:En A/m . (% — Fo)
(And as before, x; the next root of ¥ 1s such that

Ty — Ey XA m. '
We note that the interval befween the two successive

T ko
zeros & = x, and z = ¥, lies between 7, and VI

Example {i)—Consider
g+ ol 4 =0
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where y = 0and ' = 1 when z = 0. Tt is required $o find
the value of yat x = 0-5.

1 !
NOW Izméé 0S27,<.0“5
For M =1 n +y =0,
s . . N
the solution is Yy, =sin .
For m = 3 ¥+ =0, X '\",\
N
the solution is Y2 = 1'125in 0-894 x5

S

Thus at z = 0-5, y lies between 2
sin 0-5 = sin 28° 39’ (80
and 1-12 sin (0-894 x 0-5) = 1.12 sin 25287
= 0-484, ("~
Hence the value lies between . “ v
¥:(0-5) = 0350
and #2(0-5) &<10-484.
If the average of these Vlues be taken, viz. y(0-5) = (482
the error is approximately 0-4 per cent.
Example (1;1)%\i

oS Y =g/ ).
Cond.itiOI].ﬁr @s”a,b ove,
The‘.fé}\,kfé of y(0-5) lies between #, and ¥, such that

§ %" = y,, and hence ¥, = sinh &

and %" = (0-9%)y, ; hence Y3 = 1-11 sinh 0-9x
o) #:(0-5) = sinh {0-5) — 0-52]

- %2(0:5) = 111 sinh (0-45) — 0.516

Therefore 0516 <« y(0-5) < 0-521.

Thus ¥(0-5) = 0-518,

where the error is less than 1 per cent.

The following two examples are illustrations of a simple
generalisation of Theorem 17T,



DIFFERENTIAL EQUATIONS OF SECOND ORDER 195

Example (jii}.—

y”=xsinhy N £ )
x
d
where xzo;yzo;d—zzl.
Now zsinh & > .g, 1.e. > Y.
x x
Hence if we compare (1) with .g\‘\“\,'
N\
Z” = 2 ,"t s,g}
' 4 ‘.‘
dz ,";t ’
where a=02=0, ;i 1 \:..,>\’
z < Y. <)
x"\\"

The solution of (2} is z == sinh . L
Hence y > sinh #, O"

Thus sinh « is a lower bound, jigti;%he golution.
An upper bound can also:‘be found as follows:

Sinee > sinh
, g"‘}\_; - ginh z
W7 w
Sy . ginh
":\,;.:tsmh o > xsinh ( g )
Thus ghif,:}c;iﬁtion of the equation
O\ i ’n-}l x

O y"’ = wsinh (Sl po )

') .
“\“with the same boundary conditions i Tess than the solution
of the original equations.
Accordingly,

o [ a2 2

giving upper and lower bounds to the golution of the
eguation, explicitly in terms of .
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Example.—Find upper and lower bounds to the solution of the
equation

o inh Z =
Y —{—xslnhx =1,
where y=20, g—g =1 when % = 0,

194. By comparing the equation with one of simpler
type, the foregoing theorems may be used to find ap
approximation to the position of the first root of y tlie"
solution of the equation, O\’

¥ty =0 O
with given boundary conditions—say z = 0, y =i,y — q.

The root being unknown, the range is also animdwxl, and
M and m may therefore be taken in the fizst”instance as
the maximum and minimum values of p(¥]N6r the range

0 <x < on, PN
The method is best illustrated b;{ﬂ?:n“éxample.

A

Ezampls, W

T =By =0,y — 1,
Here M =1 and/m — §. Thus the solution of the
equation lies betwggn,‘\those of

\\ ” yln_‘_ylzo

and O m =
Subject fo.$he boundary condition, the solutions are
\\ Y, =sin x
and \'%Qw ?/2 = % sin %x:

andiaccordingly the required zero of y lies between z — ?_gr
N\

,<‘§m’d % = 7. This enables us to readjust our value of M,

for the range is now less than o = 0 to 5 — 32—77

~ O + 4. 53
Therefore M — B 19 = g3 A

and m

i

L=l
f



DIFFERENTIAL EQUATIONS OF SECOND ORDER 197

The solution lies between
y = (§8).sin (§3) 2

and y = & sin §x.
¢ . 37 ' 63
Therefore the first zero lies between 5 and = 53/
The mean is 4-08, the error being gertainiy less than 0-63
(see below).
The following are the results of integrating the differential
equation : .
dzy a:2 + 4 o\“\
35:_2_;’_3:2—1—9‘?”:0 N\
dy)' _ A\
x—osy_'03<d'_xo——1. ’.:.T %
w‘\\\
d dy \/
T %. d——x'. R\ Y.
O.~ v——"—______-
0 0 L\ 0
-5 —0-223 0945 0-491
1 — (457 s 0-931
1-6 —0-682 | % 0400 1-247
2 —0-846 \ 0-103 - 14404
2-5 —0-884 N —0-334 1:342
3 —O7E00N | — 0752 1-073
35 — 0450 —1-057 0-609
4 0030 —1-182 0-046
5 .{i}i-435 —1-080 — 0536

The zero igglightly greater than 4. To se(ﬂ:k the inter-
polated zgxdy we use Newton’s backward interpolation

formulg,\.':.\" (e + D)
F A % 05) = fl0) + 800 + g AT
.~ Xsing this to find « for the left-hand side to vanish,

N ily fi =0 dingly the zero is at
\gls we easily find that § = 0-075. Accord '
N & = 4038, which may be compared with the mean 4-08

already found. Thus the error is actnally 0-042.

Example.—Given
dy | . ¥t 0245
2+ A3 5550
g2 T Mt 0352
determine the value of A which makes y vanish &

cy=0
tx=0sndz=1
Ans. A = 16:3.
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,"80 that the next zero o lies between # = 1 and x — 22,

e
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Example,—
Y +ey=02=0y=04 =1

For a range 0 <2 < X; M =X, m — 1 and the solution
lies between that of '/ 1 y = 0 and of Yy e gy =,

i.e, ¥ = sin 2 and y = ¢ gin (z ).

Accordingly, the nmext zero les between ¥ == and
¥ =me ¥ and since x — 7 is the upper bound to the 2GX0,
we can merely state that it lies between « — = and z LR

The foregoing example indicates that it Is noetalways
possible by the method we have so far developed toapproxi-
mate with increasing aceuracy to the positipinof the root.
When, howsver, p(x) is a function whose gredtest and Jeast
values occur at the beginning and endiuf the range, re-
spectively, the foregoing process may.\be' repeated, so that
the region within which the zero 1@; ay be progressively
narrowed. O '

Example, —

%‘Z + 172(%—1 tan—1 i)y =190

3¢

where O tan~1 = T
i \

In this case J(ge;aﬂ oceurring at x = 0

) 2
and rondn 212 when # ——> .
A%/
Thugthe solution which vanishes at 2 = 0 lies between
\™
AN\4 ¥ = A4 sinmx

z}*ﬁé ¥ = 4 sin (—%}

i.e. 1 <o <« 1-414,

The limits of the Tange in z are now 0 < x < 42, in
which case

1 /2 32
M= 2, == 2( _—— —~1.¥“ [
T om =g (1 1_r{:acn 1/2) i
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Thus the zeros of the solution which vanishes ab & = 0 lies

between those of
y = A sinnx

and y=4 qun2/_3 x
so that the next zero o lies between z =1 and = ;/2—?
.8, O
1 <o <115 A o
O\
The process may be repeated—thus e N

L 3

\'S

:'\

M= m=mw (1 —~tan‘1,J2

Q7N
\

and the zero lies between x =1 and \
— 1 \/E _LzA\f.l*z

Hence 1< o< LM

Alternative Method Ky o3
tl %a % ¢or the Tange 0 to xis
s

\/2

The mean value of 1

i 1
] (1——tan N
& y
..:.,\_1[& T a

N/ &

4 > aﬁ
"\x‘\ = —Ltan'l-———{—mlog( +—2-):|
Me if we replace the original equation by

M\:. d?y a _-—-—rl 14 0
N gt T '”{ta“ Ivz + 3 "g( )}]

the solution will vanish at 2 = &

if 06-2[:':72—#13&11‘1—’\%2-*&—\7—10& 1+ ]“”T’
iog,(l‘i’ )]

. 1
te. &= 1/[1 - —tan”l wmvz
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Inserting o = 4/2 on the right as a first approximstion, we
get
1 1 ]
2. — =
o —-1/[1 i3 log, 21,

t.e. o = 1-25 approx. Reinserting this on the right gives
again 1-25,

We may compare this with 1 < & < 1-13 given by IQe
previous method. \

O\
19.41. Application to the zeros of the Bessel Function, £\ N
By a change in the dependent variable Bessel’s Egnation of zero
order, viz, N

dy  dy . AD
xg;+d—m+xy—0 "M’\v

can be transformed into

g2 1\ AW
Per(i+ T@).’{%\O
where y = m_.”‘.‘

Let it be given that the smallest zero of u, and thercfore of y,
is at & = 2:405. It is required™te determine approximations to the
higher roots. AW

Between 2 = 2-405 and the next zero & =

- N1 L
M—{mm_1+2—m_10432

)
7 \”' 1
and m, &-\\1 + Ty
Thus Mt > A sin (v M) (x — 2-405)

) C’\ 7 u < Bsin (vm) (z — 2-405).
Thus p&é\i&e’xb root lies in the range

‘\\\“'2-405 + T > % > 2405 T

o\ vM
s - > 2-405 4 098
~Oie. > 5485
) . .
2405 + 11-(1 — lez) > 1,

%t < 2405 4 0 < 55478,
8,
Now the root nf

ki
¥+ T = b-5478
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can be found from the sequence
%,,, = 55478 —

n

and leads to x = 5534,
Thus the next root 2 lies in the range
5486 < 2, < 5-534.

The mean of these values iz 551, as compared with 5-520, the more

acenraie solution, N
19.42. If » = x, be the nth positive root, then for the range '\’ V)
o\
T R R L Y hd
‘L{—-l—}-—1- nd m=1+ 1 ~<w"
“~= 4z, 2 & - 43:“—!2 2 .~\:"
and  Fsin (vm). (& — =) < w < Asin (VMIESE)
Hence Tyl 7~ Ty T ,"_;{ﬂ' ’::‘\\';
- ;.x\\.
and Bapr < Ty T TN
‘ 1 a\e 1
i ] -y =1 —,
Writing Mi=1 Sx,‘*’,.}:m'& &
approximately it follows that‘j{:’:’ N
o

. L
— — &, = - o 2

T gt T T T

The first two moté\x_&gnd 25, are 2405 and 5-520. Thus forn =2,

ar £ S T
So i) B ~ B2 T g5
1.e. L 8
_x:\""} 3-1288

i"\xﬁ+1 = B6488

N
Now /NN 2., < 552 + #— 3
\ ntl + anﬂ-iz

R\
A Nt . __=
Q ey < 86616 — gy
fe. . .
¢ < 86616 — g grpigy
te. < 86564

8849 < z; < 8-656.
Taking the mean of these extremes gives
Ty = 8‘652.

The more accurate value is 8:654.
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20. The foregoing comparison theorems have practically
been eoncerned with the changes that occur in the solution
of the equation

Y+ plzly =0
when p() is replaced by a greater or a smaller function of
-, simpler from the point of view of effecting a solution of
the equation. There are, however, a variety of methods far™
the approximate representation of p(%) suitable for cupgur-
pose, and we proceed to consider a number of these inddotail.

20.1. Suppose p(x) is expressed in the form (5.’;. ‘
plr) = a, 4 ax + ga? + \\
then a whole variety of forms of expansiph’ may be found

for the solution, depending on the presige’ values of @y, Uy,
@y . . . For example, the solution'q{ %)1e equation

d 1wy
d:fﬁ + (”’ + AN ““)y =
is the function, O
a N dn
. L A S L IT)
( “].). % pr (E ),

known as the parabolic cylinder function. These and
similar differentiaf #quations of this type arise from certain
of the partial differential equations of Mathematical Physics.
They will 0o, dealt with in detail, therefore, in Vol. IL
Apart frqglusuch cages and those that can be dealt with by the
method, 6f Frobenius {§ 6-3), the best methad is undoubtedly
to Pz}\hulate the function a, + a2 + auz? 4 . . . over the
range of x for which the solution is required and to proceed
m:'ﬁy any of the numerical methods detailed in the earlier
) Chapters. If over the range of x for which the solution is
reqitired the series a, -- ay* + . . . converges very rapidly,
a simple method of successive approximation frequently
suffices. The following example will illustrate this.

Esample, —
¥+ )@(1 - l%)g = 0.
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- y A2
Write ¥+ Ay = %”
and as a first approximation let us try
y' + Xy =0
i.e. y = A sin Mz + B cos Az.
'The expression on the right of (1) then takes the form (apart
from the constants) A\
 gin Ax and x cos Ax.
As typical of both consider xe then the partfct:{&r
integrals are involved in \ O

~.
N

:;; A(—-%CUSM—I_SIHM)
end are, in faet,
2 2 e
() B e

Thus
y= (sm Ax — i x2 cosAx} + B(cos Az + ——sm ?tx)

This provides a second apprommatlon to the solution of
the difforential equation for a given value of A, subject to

any two compatlbte\bounda.ry conditions.
N\

Examples.
to the solutions of

Detemme:’ﬁ;;,t and second approxm'latlons
the follo\!{mg equations, indicating the rangd of z for which they

mVﬂ:}\
\9’4-4y—-x2‘;,
y — % = ye~

{‘“) Y20+ 2y = €Y
v glven that the expression on the right

(iv) g~ 4+ pla)y = 0,
where

vanishes for § = &,

Express g{x) in polynomial form.
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20.2, Suppose p(x) can be represented in the form of
descending integral powers of ¥, convergent over a range
0 <a <& <o, 50 that the equation takes the form :

dry s LY —
aa‘f— (% +; +E2+ .- -)3/— 0.

In Vol. II, we shall deal in detail with ecertain diﬁ“erentia.l
equations of this class that arise from problems of mathe-
matical physics. An important equation of this typeGs)for
example, 'S\

2 1 % — m?
a§+(‘a+a+ixa)y:%<‘

whose solution ig the Whittaker W—functii}h, related to a
number of other functions such as the Ahel ¢-function and
the Parabolic Cylinder function to yb}eh we have already
referred in the preceding paragraph,” These special forma
do not concern us here, AV

In any particular case the figst term in the expansion for
px) can always be reduced $o unity by a simple change in
the independent variable & " Thus we may write

e o
ERLCRCRS B N

20.21. When i\k"very large, p(z} tends to unity, and the
equation takés)ythe approximate form

\\ ¥ +y=0
T{i‘sﬁiution of this equation gives a first approximation,
and“this may be systematically refined. In order to arrive

atid closer approximation to the solution, we follow a

~method closely analogous to that dealt with in the preceding

\‘;

paragraph. The process is best illustrated in the first
instance by means of Bessel’s Equation of order zero, viz.

%y | dy
@t g T =0

o

or %(x%)+xy:0
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Transform this to the normal form by a change of dependent

variable
y = uxd,

and it takes the form

g (1 gau =0
If 2 in the range required is so large that é is small
compared with unity, we may write R
a2 % Y O
a2 T ¥ T O8N
and regarding . M:\'\i'

%y = Apsinx + Bycos &
as & first approximation, let us assume AN
1

AN . SB
. (AD NE ;1) sin x + (B,, —}\-?) COS 2.
Inserting into the differential equgtmn,

— dpsinx — Bjcos x A\ y
. gin 2 cofy | 2sing 41)
_i_A]_(—‘— x - 932 xs )+(AO+ x)ﬂlnx
cos z{ <2\51n z  2co8% (B 3;1) 008
+8,(— 92\\44 g 2 1 (Bo+ 3
B ycos
e *{2‘10 @?‘(Bﬁ?)ﬁ':?'

The termg }h z° and x1 cance]

08 & .
Eq(@\‘blng coefficients of —p and c___ on both sides,

Ny .
o\ -—2A1+_4 — 0, ie. Ay = Bof8s

\ 3
3B Au ie. By = -—-A,JS,
2 1 _|_. =0 0’ €0 £

80 that with the formula
4,
Uy = (Ao +%) sin & -+ ( ,gﬁ)coaz,

QY

N
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the original equation is satisfied with error of order
sin x g cos®

3 z3 "
Proceeding in this way, we easily find
Uy = (Au + 8%' — E?%’??ﬁ) sin & ~
B - o)
the error being of order %c and E(;fo, and t?igﬂ;iffs\sociated

with ¢ = ux? gives an approximation to the\ Bessel funetion
of order zero, provided z is sufficiently darge to make %4

negligible to the required accuracy. ,3\\:

Example. ¢ \

Given that y is zero at # — 5-520 ‘aild at » — 8-65¢ determine Ag
and By. Compare the answer with the results of § 20,22

20,22. Tt remains $o dt?te:fhline the constants 4, and B,
80 that « does, in fact)approximate to i/, ol). Sinece the
expansion is not valid in the region of & — 0, wo proceed
to rewrite it o €hat the general form of the series may
stand out mgﬁx learly. Tt can then be compared with
other approfimations to J,(x) for large values of z,

Write :?fo sinx -+ Bycos s — € cos (2 — @)
\’\Ao cos & — Bgsiny = Csin (x — a)
£ ) - J— 2 k'3 —
the NV 9c g{"P :ai_of{noc sfi;tfé En‘%f%x 3
'?:'hpncc it 19 easily found that

N\ 12,32 12 .32 52, 7°
~\. P=1-_—>"_ =9
\‘; 1 21 (8z ) 4! (8x)?
g— -1, 1235
T B T B BaE

It remains to find « and C so that spproximates to ahfy(r)-
Now, it is easily verificd by differentiating under the integral sign,
and integrating by parts, that

Jolx) = % j:cos {z cos ¢)de

satisfies the Bessel Equation.
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Consider
T _ = f!
U= j; cos (x con pidd = 2 J: 08 (i 008 ¢ Y.
Let cosd=1—p th -~ %
et cus g then dé V25 — 1)
Then
U= | o8 (x — apldd = fcosxcosywdgﬁ + Lnsinxsinpxdc}) A

= F,coaw 4 Upsine

. . 1 cospx sin px g"\t\’
where Uy =2 | e gn) e ond Us = [ = Ao
In U let i = p.x, then ) »."“
cost dt ( 2O
o \/ \/ ) 5837}
w\,/

0\
g Z
;o xcosidt]’( ——t-)_*-—.l 4
where [ = L —7i 1\ 1 %) &
It may sasily be proved that Vi is, ﬁm%e however large # is, thus

2508 & 1
Ul——yle\/z}jﬁ"ids r(_§>

Z—m N
1
S
Thus \ \\ Uﬁfﬂf%,;_mfr(ﬂ 1)

9,

" in 1y _ 2 " )
Hencs Jof\) c‘ﬂ%}.— I‘(-—Q) = \/(ﬁ) CO8 (4 x

It f&gwms to deterraine € and « by identifying the expression for

1) WL{
A AT (w) = \/(?T) cos (Z - x)

Now w——> OfF cos {a — %} + @ sin {x — =}
3 cos {x — =B
m
Thus Cs‘\/—anduﬁa
k14

and we have finally

0(x)*—>\/ Pcos —-—-x)+Qsin(E—- )}
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II.3 1t 5.
T3 T LB
12 pge g
O=—ir.& T 3rE -

20.23. We are now in a position to determine the large roots of
Jyfx), Tor this is zero when

where P=1

12,32 12,32, 52, 7%

1 —
T _ _ 21 (82 41 {8z
tan(i—x)_—f'f@— B O s
118z ~3i@er T
When 2 is exceedingly large, the right-hand side becornesMarge also.
Thus the roots approach the values given by N

7
m

i %=(2n 4 1)%= nw _}_g\\

i.e B = g — 2
2 = —nr —3 \
) x.'\\..
or & = _z \ ’
where m is any integer. O _ )
A second approximation may be derived by expanding the right-
hand side of the above expressien in the form

m

and thus im’\"‘ &= i~ tan-1 (g-i:) approximately.
© : :
20.24, We m}y illustrate the more general method by
means of the-equation
A\ W
A\ ay ( 2 k) —
9 (‘w —\a -i-’§ iy = 0,

A&
"?’m:mﬂeﬂponds to the case m = } for the Whittaker
W-functions,

" When  is large the equation approximates to one whose

solutions are e and ¢-e Accordingly, let us tentatively
assume an expansion of the form

— o AE gt Al A2
¥ = ¢ x(lﬁ—?—{—? )
where 7, 4,, 4,, . . . are to be determined. Inserting this

into the differential equation, the term e ** ¢an be every-
where removed, and we find
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A+ A=t A 24 ..
— 2a[ra—t + {r — N4+ (r— 2) 423 4. L L]
+ D — D97+ Ayl — 1 — 20
. 4 Aylr — 2)r — St . L ]
A+ D)+ g gt ) =0

Equating the coefficients of x", 1, . . . in succession, to
zero, we find the following relations to determine r, 4,, 4,,
ete. L\
@ —af =0 O

Aot — 2ar — bk — 462 =0 N
A0t — 20(r — 1A, + r{r — 1) — ad, — kd, 0 7

Ay — 2alr — 2)4, + A,fr — 1)ir — 2} — ady— kd, =0

From these it follows that : \\\\“
r= — ki2a P\%
A, = — k(k + 2a)/(20)8

<1

A, = k{k + 2a)2(k {402 - (20)°
,'.'

and the terms in the gxﬁé.hsion for one of the solutions are
thereby detormined.Jf in the above & he replaced by — @

the other so]utia@fﬂ"’immediately found.

EMPIQ-—T&ﬁuIate for the rangs 4 <& 10 to four places of
decimals, the éolution of

»\X\ Yy = (1 + Q-Ix)‘y

th&ts'iﬁ\zero when z is infinjte and has unib value when z = 4. The

solugion that is zero when x is infinite is thab corresponding to the

Agetor e+, Tn this case

: k=1ta=lLr=—4
AIS_'QFE’AS;_‘%'
225
Thus yzAB-zx_i(l__gg_w_i_W-—-...)-

Determine 4, and then tabulate.

n all the previous numerical

203, I di
t has not been assumne ous function of %

work that p(a) is necessarily a ¢ontinu
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except where the forms in which it has been presented imply
this. For many practical purposes, however, p{z) stands for
a series of physical measurements that resemble a discon-
tinuous function—for example, in the case of the flexure of
a stepped strut, whose area of section may increase by
finite increments at various positions along its length. For
the study of such cases, either a purely numerical method
may be applied, using one of the numerous prodesses
described in the earlier chapters of this work, or¢p(®) may
be represented as a Fourier Series. The eqt‘@bion then
takes the form (1) below, a type of equation~that arises in
various other physical problems. A

Let p(x) be represented in the form ,oﬂ\a: Fourier Series,
thus :

p(x) = ap + @y 008 & + a,008'2% 4 . . .
so that v x - .
¥’ + (a0 + ay cos 2 + a, dos 22 4 . . Jy=90 . (1)

This is Hill’s Equation,,ﬁfﬂibh arises from a study of the
departures from the periodic orbit due to the action of
certain disturbing forves, « being the time variable and a,,

@, @ . . . numefical coefficients. Floquet * has shown
that the genera.\ll Solution of this equation is of the form

N ¥ = 01", () + ooy . . . (2
where Q,@n& C; are arbitrary constants, and X is a constant
depending on the coefficients @y, @y, . . . in (1), while ¢,(x}

andr$y(z) are periodie functions of period equal to that of
plx); viz. 2n.

Now (2) is a very simple case of the representation of
() ¥(®) in terms of quasi-periodic function. Tt follows that if

any particular solution of {1) can be determined, say in
numerical form, then by an analysis of these tabulated
values it should be possible to determine A, $.(x) and &,(x),
the latter two as periodic funetions, and hence to find the
general solution of the differential equation in terms of the
two arbitrary constants. To find the periodic forms of the

* Annales de I Ecole Normale Superieure, (2), 12, (1883), 47-88.



DIFFERENTIAL EQUATIONS OF SECOND QORDER 211

functions ¢, and ¢, it would be necessary merely to express
the tabulated values as Fourier Series.

It remains, therefore, to show how A, ¢; and ¢, can be
determined numerically, once some one numerical solution
of the cquation has been found over a wide enough range.

Let ¢ be the period of the functions ¢,(x) and ¢,(z), in the
present case @ being equal to 2.

 Let X represent the operation of increasing = by a, so §

that K
Ed(x) = d(z + a) N\
Then )
(1 — )"y (x) = 4+ (o + @) — €7 AR} = 0
ginece $a(x + @) = $:{#) R
Also N4

(B — eo)ehiy(x) = et Iy + N €7 y()
= {e* — e (%)
= — 2 ginh &%, (7).
Moreover, i
(E — e™jeiyla) = 0.
Accordingly, from (2) \
(B — goNB — e™)ylz) =0,
i (E{%w\z cosh Az -+ 1)y(z) = 0
B8 ylo - 20) > }cosh ‘o .yle A4 a)+y)=0 . (3)
Tt appeays<then that y(x) the general sq]ution of t".he
differentigl efuation must satisfy the funetional equation
(3). O
Thus>  cosh Aa — 3y -+ 20) + yla)yle + @
e e @ — 27 and # may have any value, it follows that
\ we may write
cosh 2xr = 3[y(4m) + y(O))/y(2m),
so that A is determined at once if any solution of the dif-
ferential cquation has been evaluated over a range 0 —h 4(':17
This, of course, can be done by any of the numerous methods
already outlined in previous chapters. Once A _lsf tlflleter-
mined, the functions ¢,(x) and $y(z) follow easily as follows.
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We have
(B — eiyg(a) |

= (£ — e*)[0 078, (z) + Cae gy (a)]

= {# — &) . Oy (2)

= 20,6"¢,(x) sinh Aq.
Thus ;

Crga(@) = e Hy(x + 2m) — e2y(z)]12 sinh 2mne L

Similazly Oy

Cobs(x) = — e[yl + 2m) — e*iy(x)])/2 siphéwh.
Since A has now been determined, and arfmi"ct-ion #{x) is
presumed known in tabular form, the_two“functions b, (x)
and gy(z) are here expressed in a form/capable of direct
tabulation over a full period 0 — 2m » For this purpose a
and €', may be replaced by a cor@b@hﬁ;, say, § sinh 27 and
we can write

1@} = eyl o) — eyl

$a(z) = eIgtiyls) — yio 1 2m))
Once ‘¢, and ¢, have Ween so tabulated, they can be ex-
pressed as a FouriemSeries in the ordinary way,

RN
2031, For csimplicity we will apply the method to
Mathieu’s Equ tion, a particular case of Hill’s Fquation,
ViZ.: '
J ¥ -+ (@ + b cos 2x)y = 0,
W%&;,‘for example,
»'J{\ ¥+ (1:3158 + 0:800 cog 2x)y = 0.

.y \\ The table Opposite gives the values of y to five signifi-
N/ cant figures for the range x = 0 to & = 67 at intervals of
7 /6.
Accordingly

cosh 27 = [5(0) 4- Y(4m)1/2y(2m)
= [0-0080 — 0-8543/2 " (— 0-3524)
= 1-2008
Hence = (09892,
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!

&£, . @, Y. . )
0 +0-0080

w/6 | +1-0449 | 13x/6 | 40-0947 | 25x/6 | 10337
x/3 | +1-8488 Tn/3 | 419391 | 13+/3 | 430078
#/2 | 4-1-8553 5xf2 | +2:4168 97/2 | +3-0480
2ni3 | +1-7642 8n/3 | +2:5003 | 14m/3 | +4-2612
576 | 12214 | 17x/6 | £1-9817 | 20+/6 | +3-4892

" F0-1644 3 +0:5752 | 5r +1.2168
Tafé | —0-9723 | 194/6 | —1-1148 | 31x/6 | —1-7042
4rf3 | —17101 | 10/3 | —2:35679 | 16x/3 | —3-9519
32/2 | —2:0365 Tof2 | —3:0341 | 1lm/2 | —5-249%
5mi3 | —2-0369 | 1la/3 | —322270 | 17/3 | —5T7120

a6 | —1:5175 | 23a/6 | —2:5983 [ 36./6 | S4.7222
2 —0-3524 dor

—0-8542 | 6r {96987

The following is an alternative method of"‘d};iving these

results, \
¥(0) = Cy$,(0) + 02?{’2(9}'

y(2m) = ey (0) - FE(0)

Y(4m) = ¢, (0) £°¢56,(0)

and accordingly

~

#{0) AN 1
y(2m) SUi et =0
y(éﬂ.) Ve e-tml e—‘tm!

This gives the sg.me\result as before.

Now o (@) = y( + 2m) — e*y(2)
and &3y} = Ey(x) — y(= + 2m),
hence the>calculation proceeds as below for a complete
period.'\.’:\'-“

:&'% Q. wif. =f3. wfd. 2x/38, 5m 8. o,

J'?&f{x) . | —0-3568 | +-0-4346 | +1-0567 | +1-4225 | +1:5640 | +1-2073 iggg;g

N (3308 | +0-4126 | +00515 | +1-2173 | +1-2705 | -+1-0083
a Ty 05674 | +0-9545 | +1-1360 | +1-0440 | +0:7813 | +0-316¢ | —0-2687
\, ) ¢,(tf’( ). 10-3374 II-UUEA +1-2804 | +1-2200 | 409618 | +0-4103 | —0-3674

2 Tmf6, 43, 32, ba/a. 11x/6, 2x.

ez L y 1 'y 21357 | — 17857 | 1—0-0656

€' cd{x} —{-5084 | — 14416 | —1-0420 e Rt e T B 44

duz . ~0-4126 | —0-8515 | —1-2172

=4 _o - _o-7844 | — (5788 | —02317 | +0-1972
ey — 0091 | — 088 | — 23000 | —o0-9618 04103 | +03674
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These results, when repregented in periodic form, deter-
mine ¢,(x) and ¢,(x) as follows :

$1{2}) = 1-2841 sin & — 0-3440 cos &
+ 0-0679 sin 8z — 00126 cos 3z
-+ 0:0012 sin 52 — 0-0001 cos 52
and $o(@) = 1-2841 sin & + 0-3440 cos 2 R
+ 0-0653 sin 32 + 0-0230 cos 3z (N
+ 0-0009 sin 52 -+ 0-0004 cos 5z ()

LN,
£G4

Thus the solution of Mathien’s equationég c:ompletei’y
represented for any range of values of z. O

20.4. A method closely related o that of the previous
section can be applied when the egWtion can be written
in the form \

d2y 2 _ § ::;;};
g2 — (@ +ape le‘j%e + ..y =0,

Here p(z) may be presul;:j;é&f expressed in terms of expo-
nentials by Prony’s Method. When z is large, the equation
limits to one whose @Iutions are e and ¢ s,

AN

Accordingly, write
Y= (4 Ao gy ),
Inserting.\t’lji}i’ in the equation, we get
0 = afe (e — 124 ¢fo-Dx | (4 — )2 Agele=2r 4
— (@ dodier L ae Jew + A efem Dz | 4 plemay )
E@;i:ing to zero coeflicients of es, efe— bz ete., we derive

"f{lﬁgé?following system of equations

gt —a?
(@ — 124, — a4, — ;=0
(@ — 2)24, — a%4, — @ d; —a, =90
(¢ — 324, — a%4, — @14y — ayd; — ay =0

It follows at once that
@ . P {1 — 2a)

A=y =T 2a)(% < 2a) °

A, =



DIFFERENTIAL EQUATIONS OF SECOND ORDER 215

Thiz provides one of the fundamental solutions of the
equation, The other is immediately derived by replacing
@ by — win the expression.

Thus, approximately,

— a a - ﬂa+ﬁ(l—2a) _
y=Ae (1 Rl *"2(11—25;,2)(2_2@“3 o)

— a2 &y —z a2 +a “. + 26‘") _ O
+ Beo{1+ Fa " T e rm T -):\s\.
S\
Examples. g\

{i) Derive the approximate solution
y=A[l ~e* + fe? — gfgetr + . (AN

Lo the differential equation

¥

(¢ — bl 4y =0,

W

by writing the latter N\

(R S ¢ 2 &
V=g gt Y )
How would you derive a second s'cyl{}st'-ibn?

(i) Examine in detail the casea® = }.
{(iii) Examine in detail the cdse

24\ s
a1=maq=a“=...—a.

¢(\J

\ )
20.41. When tbe}luation is of the form

3-2-9 B+ ae Fape .. =0,

a solui;b\g\ﬂgé,n be found of the form
Oy =sinas(d, + AT+ Ay A+ )

~O° ’ +cosax(By + By + By ¥ + . . )
N\ ) This follows at onee from the previou.s case,‘but can_he
verified directly by insertion into the dlﬁerentlal_equatlon
and equating to zero coefficients of ¢ sinazand ¢~ cos ax

in the resulting expression,

Esample.—Determine a solution of the equation
'+l —efly=0
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as far as terms of the ocder e-2% sin  and &27 cos =
(i) by the above method,
(ii} by suceessive approximations, using the sequence
Ynt 1’ + yn1 = oy,
and taking y, = 4, sin z 4 B, cos .

21. Differential equations involving an unspecified constant(

In general, the dependent and independent variables in a
differential equation that represents some physicalpreblem
stand for measures of physical quantities. Thus they have
dimensions. Such an equation must therefdre be dimen-
sionally homogeneous. By a simple transfdrmation of both
these variables it is possible in general te'zbduce the equation
to a relation between non—dimensiona{pumbers, but in the
Process there usually appears in the'\éq}lation as transformed
a constant not previously appaxsib.

For example, the differential\@gnation for the flexure of
a strut is o
. EIyAy- Fy = 0.
If I be the length, thew' by writing

AN w=lry, y =y,
and \‘ I = I RB(x,)
the equation Jbecomes
< Py,  FB g
N N\ _1 _ _.1_ —
AO dzt T BT, By — O

~0
Wheg“l%{— is now itself a non-dimensional combination and
2 8 [1]

alithe other terms that oceur in the equation are also pure
3 q
\m\ Jwumbers. Again the equation for a vibrating pendulum of
’ length 1 is
d%

Writing ¢ = T%,, where 7 is the periodic time, this becomes
d*
dt,*

and g%/l is now a non-dimensional constant.

H
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These equations are both of the type
¥+ Ap(x)y =0
and for many purposes what is required is a solution, not
for & specified value of A, but as an expression involving A
explicitly, so that the types of solution for a variety of values

of the constant A may be studied.

The most obvious method of seeking & solution in thel
first instance is to obtain an expansion of the dependent
variable as a series of ascending powers of thig constasl\Iﬁ‘.m\

Ny

21.1. Consider in illustration the differential eqiidtion

d €4

d%’+ =0 . LN L ()
where A is a constant, and let us assumesthat there exists
& convergent solution in ascending powers of A of the form

Y=g+ + BT . . L (2
where ¥, g, . . . are functions.df's.

If such & eonvergent expaiigion can be found containing
two arbitrary constants, \§*must be the solution of the
equation.

Ingert (2) in (1), “;@jh\ave :

gk g Ay L
+.M0+ Ay 4. =0
Equating ¢ ‘}‘ﬁcients of A to zero, we have the following
system of.equations to determine y,, ¥, . .

o' =0  Hence y,=A -1 Bz

&8 _ Az®  Bx®
~AOT BT T P T ET 3T
) ., Azt Bes
\ v == P =gt

Thus the functions ,, ¥, . . . are found, and they involve
the two constants 4 and B. The expansion therefore takes

the form,
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Ar? AZpt )3gf ,
y:A[ Z1+4T_b7+ ] (3)
AfxS ABy?

+B[ 51 "7—!J

=Acosx\/z\ vhsm e/ A

when A is positive, If A be negative and written — 4, then
the solution of

d ’tﬂ s
gf;:% —uy=0 . . ., . :“.\:\\..}4)
) B % N/
is y = A cosh eV + \—/;LSiIﬂl 2/p N
Thus the two fundamental solutiong of \:"\\\'
dz \
dxz Ty = 0\
nir?  pipt \‘
are 1— 27 -+ Ve "”1‘ v/ = COS RX
R n5x§‘~’12"“ )
and e — T _5:1‘:‘_ = 310 N
while for the equa.tion N
SN d
, a\;\ d%ﬁ —niy =0
\\
n2x2 n-ixi
they are ,.,IJ‘F 57 +—47 4+ ... = ¢osh nx
N/ ;
AN pBpd p5s
and \\ ny +- ST + BT + ... = ginh nx,

’Bh\sse well-known expansions are uniformly convergent
Q\?&e‘i‘ any range of values of z.

...\ W

/212 Consider now the differential equation
d
Lt Moy = 0

where p(z) is a positive function of g imtherangea < @ < b
Thus, for this range 0 < m < px) < M, where m and M
are finite,
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As before, assume that a solution exists in the form

Y=+ Ayy + A%y, 4. ..

where ¥y, 4, 4, . . . are functions of z, We shall show
immediately that such an expansion can be found, and that
both it and its first diferential coefficient are uniformly
convergent. Accordingly it may be differentiated term by,
term. Inserting this expression for ¥ into the differential

equation we find SO\
d_ﬂ_?/l:l dzy]__ N h X s\ .
dxn‘!‘)l“@‘i‘)‘%z_—l"- . (..}‘.
+ Ap(@)yo + Mp(@yy + . . fzo
Equating coefficients of powers of A to zero,we have :
%' =0; y=A4 + Bx 'x.‘\\.,
¥ = — pla)y,; 2\ N

h=—4 ]:dx!:p(é)‘dix —_ BJ:dx j:xp(x)dx
Yo' = — p(@hyy; ) r 3 . .
o = A j dxja p(x)dx j dz ] plz)de —

A= j dx f p(x)dx ]:dx ] ()

7
N

Inserting theseieftpressions of ¥y, ¥, . . . into the expansion

for y in pg{v:e}s' of A we obtain the solutions :

= QEI\—- A e f:p(x)dm
N + 2 [z [ payae [z [ ooy — .. ]

,n\" w

N 4 Ble— Aj:dccj:xp(x)dm
+ Aﬂj:dx [p(x}dxjjdxfxp(x)dx — . ]

where the series in square brackets are evidently generalized
forms of the trigonometric functions, sin # and cos «.



220 SPECIAL METHODS APPLICABLE TO LINEAR

The boundary conditions are easily inserted.

Suppose

r=a,y=09 =
then 0-=A4d+ Ba

b= R,
Thus A= —uab, B=b.

This leads to a rather important conclusion. We notoe ultat
both 4 and B contain the factor 5. Thus we may m;iEe ;
ylb = — al(, z) + SO, z). AN
Thus G\

(i) for any given value of X and @ the pmiinz;te of y is
directly proportional to the slopeat & = a.

(1) since the expression on the rightNgdndependent of b,
the positions of the zeros of ghare also independent
of b.  Thus all solutions of $he differential equation
that pass through the point x = a, y = 0 have the
same zerog provided’the expansions are valid over
the range. N

*

. fEx;amples.

(i) When 2 is smali, S\HBW that the zeros are given approximately
3

by the equation
¢ & ]
%éa:lﬁ dx/ (@ — 1), plz)da.
N 1]

(ii) _If y_is @eré at =0 and » — 1, show that % must have one
of an mﬂmt/é.}.ot of values, and find an equation of infinite degres
in ) fromyhich they may he determined,*

’“\’ W
21.2{&onvergence of the expansions,

X \In illustration Iet us write A = 1, and take the lower
\\3 limit of the interval as zero. Writing

0@ =1- | o / " o)

+[dxfozp(x)dxfdxfp(x)dx _

* These are thoe characteristic values of L. We shali return to a
discussion of such numbers in Vol. IT,
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S(x) =& — [:dx f:xp(m)dx
-+ j:dx fp{x)dxf:dx[:xp(z)dx -,

Now |C(x)]| is less than the sum of all the terms in the
expression for C(x), each taken with the positive sign, and
these again are less than the corresponding terms in whichs,
p{#} in each integral is replaced by M. Accordingly
3 4 ¢\
(0@ <1+ MG+ 25+ ... AN

i.e. < cosh w4/ M N

which is finite for any finite range of 2. A sigiilﬁi‘ argument,
applies to S(x). \/

Example —Show that x.\\f
cosh &v/m — cosh x4/M + cos xv/m J C0s x4/ M
<< 2Cx) \$

< cosh a2V M — cosh wv/m - cos@VM + cos zv/m.

In most practical cases, depending on the solution of a
differential equation of the.foregoing type (e.g. the flexure
of a strut) the function p{¥) in the multiple integral is pro-
vided in tabular form,#nd the integrals are easily evaluated
numerically. We shell return to this subject in Vol. IT
when dealing with “the determination of Characteristic
Numbers and gther critical constants of physical problems
defined mathematically by differential equations of the

second 01}:@1‘.:
Exaile
,..\I,n’fﬁl;is cage
Accordingly
2 2 @ 2’:2 5‘33
fodxfo (1 — 2o = -2
28

2760
def:(l —-l%)dxj:dxf;(l —-%)dx :;—;1—3—%5;]4—%.
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Thus one fundamental solution is given approximately by
¥t 2 e x8
1 )‘("2“_6_0>+ A (ﬁ“:-.'_o‘o'*“ 18,000) o

For the second fundamental solution we have

[:dx ]:x(l — %)dx =%3— %

F T m z I x S
fo dx fo (1 — m)dx ]D dx[o a:(l — m)dx A
AN R .\
~ 120 1200 T Z000" "
Finally therefore we have approximately ’

S

. SR N

+ B[x - )‘(%3 - 13246)4' )‘2(1—2‘6 j{%o + 56,400 g

213. The same method of ,pgpénsion may be applied
directly to the equation \y

a1 dg:fz
o [ﬁ@@] + Aglz)y = 0.

This is equivalent €o. writing p(z)dx in Place of dx and
7(x)/p(z) in place\of p(x} in each of the integrals. For
example, S(a:} and’ C(x) now take the form
O) = 1 -r\]‘o pla)dz j Fw)de
R e O z 2
P R O
' ”x\S'f(x) =@ — [o ple)dx fo xq{x)dx

i\’ ) + f:p(x)dx [: glx)dz fp(:c)dx f: egleyde — . . .
Examples,

1. The equation
dz d
I [p(x) diﬁ] +hg(x)y =0

arises from a consideration of the Aoxure of g rotating shaft, Find
an expansion for y in a power series for 3,
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2. Find an expression in ascending powsrs of ) §
solutions of the equations §F ° or the general

0 g 38 +aw=0
(i) a%(e”%) ey — 0

(iii) dz(H}x, W) rey— o0

214. Suppose p(x) = p{x) — eg(x) — 2(x) — . . . N

where the equation \J .
2" + plxiz = 0, o\
is completely soluble in terms of elementary‘{unctlons, and
€ is a small constant.
Let 2 = dzy(x) + Bagft)™
be the solution of the equation ir_}ﬁz:}hen the equation
¥+ ,0(9«“)?)“-’: 0
may be written as
Yy + plaly = eg(x)y + er(z)y.
Let Y =Y T + s +
as before, then,i géi‘ting this into the foregoing equation
and equating powers of « to zero we have
¥\ KPRy, = 0
yz\r:% Py = al=ly,
+ P(w)ya = q'(x)ys + ()91
.\ Co oo

:l’hese equations are now soluble in succession, so that the
expressmn for ¥ may be derived to any required order in e.
Since we can introduce the two arbitrary constants in the

solution of the first equation, only the particular integrals
(involving these same two constants) are required from the

subsequent equations.

Example,
Y (14 ee®)y = O.
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The systems for golution are

¥~y =0
Yo Yy = €Yy
Ys' — Y= €Y,
Thus ¥y, = de* + Be™. A
Accordingly to determine y, we have A’
¥:' — Yy = A + Be™ N
B % N/
and therefore yy=— A + 3 ez, N
s '{:"
Thus Yo' —ys= — de* + ?Eﬁk\
— 4 —Z g \.;B ~3i
so that Yy = —Exe’,;{rz—{;e .
It follows that as far as termiy’in €2 the solution may be
written o\
LY g 6 an)
¥ = A(‘f — € ?2:&?"‘) - B(e"’ + :—ie‘-x + 55 =)
' Q Examples.
1. Tabulate tha;s}}}ution of the equation
\ ¥ — (1 +e%10)y = 0

where & =00 = 0; o =1, y — 1 for the range 0 < x << 1 correct
to thred deeimal places, B

2, . 8alve the equations
)0y 4 (25 - cos a)y — 0,
\%iw} ¥ 4+ (9 —eosaly = 0,
KNIV ¥ b (4 — cos z)y = 0,
"\J,:?correct to two decimal places subject to the conditions
a\"4 a‘:=0,y=0,y’=l,
\/ Determine the range of » for which these approximations are valid.

{v) In the case of axamples
the position of the next zero.
(vi} Solve

(i), {iii) and (iv) find approximately

@+ Oy oy =0

where & =0,¥=0,% = lcorrect to 1 per cent. for the range 0 < 2 < 1.
(Rewrite the equation as

y” —l—g(l -1-%1!)_]L =
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and expanding the binomial terms as far as is neecessary for the
desired accuracy, apply the method described in the foregoing
paragraph. ]

22, We turn now to a consideration of differential equa-
tions of the second order in which, the equation being in
the normal form, the cocfficient of y is a funetion of z and
a constant, say h, that can assume large values. The
problem is to find an approximate solution to the differential
equation, the accuracy of the approximation depending on
the magnitude of k. R\,

Consider in the first instance the following simple cage.

77
< %

22,1, Let the equation be

d2y R o )
d—xz—k.lﬁ.ymo . N - P (l)
where ¢ is a function of  and % is cape@h‘é of assuming an
indefinitely large value.
Assume that a solution is possibie'ifl the following form

y:mﬁ.e*”(l—lj%:i:%-’r----) .. (i)

where ¢, w, f;, fo. ete., a“,rérf'tinctions of x alone. Substitut-
ing in (i) and equating' goefficients of 4% A and A° to zero,
the following equa{{bm may readily be found

L4

) = @z . . . . . (iii)
¢ w i
¢ SoE W
.t\" ¢u
"\." e = — 2w:f1' - - . - (V)

From (iii) w = f dz . * taking the positive sign only.
'"*;’E;'om (v) logé = — §logw’ + const.
A% = log (§t} 4 const.
Thus it is enough to take
b=y
Using this in (v)
A R S [
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The approximate solution is therefore
1 r b
y =gt (oxp. hfh . dm). [ 1+ oo (4400

+ [P e+

corresponding to the positive sign only in equation (iif).
The solution becomes invalid if ¢ has a zero in the range
over which the integral is required.
An approximate solution of AN

d
Ezzﬁk“.gb.y:()

is therefore given by o\
y =gt . exp.(+ B Y . da)

when ¢ is positive in the range, and if ¢ is negative over
the range the approximate solutinhs are given by

y = ﬁqj&:'gé’é;" f g . dw)

o« z
and yS¥risin (b ¢ . da).
Accordingly if in the equation '

E is a positive function of x which does not vanish or
become dhfihite over a specific range, and if it has, as a
factqr,,:;}f constant A*® which may become large, then
ap&(&x’imate solutions of the equation are

‘..\w”.' y:meifﬁi.az_
If R is negative over the range, and B = — 7', then
d
Bemy—o
and ¥y =T%#HA cos L + Bsin L)

where L= f : Tide.
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Examples.
(i) Consider

2
%?’; + By =0,

Thus L= | Thx = [ hewdz — — hes
and. y = e(4 cos he”® + B sin he ™).
Suppose y —> 0 as x — oo, then, since
¢ gin hes —> ¢ het —> he?? —> 0 Y

\
it follows that 4d=0 O

y = Be"? gin he ™,
This series of solutions therefore has zeros Qt
y

x = Iog L3 v
\\}
where n =1, 2, 3, \s
(i) If d it S 100}23; =0

da?

to determine an appromms:jse expressmn for y over the
range 0 <2 <10, AN
Let z = 10z, then ~
"\

£ o 108(22 4 1)y = 0.

\\dw
Thus 2 = 1, OOQ and = (2% 4 1)?
AN \ J 2’-3

o [ gz =%+

andw\ﬁherefore an approximate solutmn
:.,\x?{‘” — {22 1)tet 1000(3 + s)
\M}“ = ozt + 100) ) .ei 3 im’.

Finally

B 100:]
3

: 2 L 100z
oy = (x? + 100)+[A33 T L Be
(iii) Show that if

a2
T4+ (@ + 100yy =0,
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where z = 0, y = 0, ' = 1, then, approximately

¥ = & (2 4+ 100)}sin (%— + 10093)

T

(iv) 23; 25(1 — Lcos )y = o.

In this case (N
A2 =25, f = L cosx — 1.

O\
Hence ¢ is always negative and the a,ppromma,te. aol\utmm
are A~
T b
(1 — 5 cosx)¥cos 5f (1 — os(r)idx
and (1 — & cos 2)tgin 5f 11— 305 Y.

Expanding the binomial terms and’ ‘bﬁrrymg through the
Integration, these give apprommwbeﬂy

gin x
cos5[ (I — % coax)*dx—"caso( - 50)

=\80s 5z + % sin @ sin 5z
x
sin 5 f(l — coax)* = sin br — 4 sin x eos 5z,

Thus, correct t@"l\per cent. at least the solution is
N\
y—Acosb’x—{—BsmSm—i— (As1n5m—Bcos5:c)

This shotﬂd be compared with the result of example (ii)
of t e"prewous section.

(\) Approx:mate solutlon of

o) Py Ny
\“\: dat T (% — z%2 —

where A is large, and | 2| < |¢|.
The solutions by the method of this paragraph are

# = (¢* — 2%} . cos {)tf {c® — )1 .dx}

= (c? — x)t, cos{—logc_!_-x} co (1)

cC—x

0
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and
4y = (e — af)t . sin {A[ (c® — 2?1, dx}

— (et — a2, sm{—logc+--§} . ()

When A is large the Jatter hecomes
o — ap{a(CE R B(g‘—;—i)%}

> Y
= (¢? — 2?) {A exp( log )+B exp( log o )}

. 4

This gives at once the general solution in,the form

(o 2 W e )

which is also the form obtamed fi‘om {i} and (ii) above.

Examples.

Find approximate solu‘tlons to the following equations for positive
and for negative va,lueéof %, indicating in each case for what ranges

of z the form of so \Lgbmn iz valid.

(P 96 1y =

{2) \k-”9(x + 1% = 0.
RN

tErET
W\ 16y _
\"\ lo Eﬁ P T
\/ @y 16y 0.

B) et @2+ 4?

The method of approximation carried through in the

previous paragraph may be extended without much elabora-

tion to the more general case where the coefficient of ¥ is
a quadratic function of B whose coefficients are functions

of x.
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22.2, Consider the equation *
d? :
= Byt Ry )y =0 . . ()

the, ¥y and ¥, are functions of x, and % is a parameter
independent of @ but capable of assuming indefinitely large
values.

As before, assume that a solution exists in the form.< >

y=¢. e’*”(l +%+ {g + .. ) .:\,}".‘".\.(ii}

where ¢, w, fi, f, . . . are functions of x a,long.f?"
From (ii) A ¢

R N Sk AR

i e )]
= e[ hw'd + (¢ + wdf, ]\
’.”1 ’“f * ¥ )
G w4
gy~ P+ Q hIR]
Y — W PR WP 4 wQ) + (@ + wR) .. ]
N\
Hence, insert%d;his expression in the differential equation
and equating coefficients of 49, % and A% on the left-hand
side of (i)40-zero :
Q¢ WP — o = 0
»\X\ , fP' + w'@ — (b1 + dfyh) = 0
31}3\\"' Q -+ w'R — (b + s + futbed) = 0
Fhere P—=w'd; @ =¢" +w'tfi; B=df, + ¢ + wify
() Inserting these values for P, @ and R, the three above

h a
\, equations become

W' =,
w4 w'e' + w'd + wif, = i + &f by
¢ 4+ w'dfy + 2w'dfy + 2w'df + w'?f,
=y + f1¢’1¢‘ + fobud

. * The substance of the following paragraphs and of parapraph 8.1
is taken from & series of papers by H, Je y8 (Proc. Lond. Math.
Soc., 2, 23, Part 6).
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These final equations reduce to

W't =y . (i)
é: N '!,1 o wu .
2wl' - (lv)
2wy =do— ¥ )
(iv) may be written in the form
(E 1 wu _ lﬁl ) .‘\\,
FTiw = O

2 O\
= it . exp. j ’!’—d:r\ !

Thus the term ¢ .¢™, to which theﬁolutlon y approaches

as b becomes indefinitely large, 1s

S

Lk f yolis ~.3’{"

gor = ge

dz :l: .p:’idx
—-lgf W )

= e eX‘&\[i [ + 20y 2] -

the lower hml,t of the integral being arbitrary.

{vi)

From/(wy the function f; is determined in the form

W
\is./ ¢n
O = mle%)
e jill the terms under the integral sign are now known, and
\/ therefore the following are approximate integrals of the
equation :
yl — ﬁbo-];elx[h“’ai +(¢.J’5%*)]df- [1 + %J 2¢ i :l (W])
gy = hgrte T I D [1 j T * ] (viii)
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where in y,, $ = Pt . exp. U 2’:,!;* )

and in g,, $ = — ¢t exp. ( 2‘:’; T dx)
Returnjng to equation (vi), it may be easily seen that

gt + 3 ¢ ; differs from (A% 4 2upy -+ )t by a quanhty

at most of order A1, Thus if the equation (i) is wrltten
in the form &

| d O
T — By =0 A\
then the solution of the equation may be a@ﬁroximateiy
written N

y =kt Rt ekt

If B is positive throughout the range\ﬂ}ls is the most con-
venient form.
If B is negative throughout the r&nge then

y—k*T-t gosf ™, dx

and ¥ = hh, T—* sin f T*dx

are the resl forms of the solution.
If T is an even ﬁnctlon it will be found to be convenient
to take the lower Jimit in the integrals as zero.

Then lf L f Tidx

\~ y——kiT—l (4 cos L 4 Bsin L).
The particular case of i, =y, = 0 has already been
d&&l‘e with.
\ ‘Example.—Examme the nature of the solution in the case where
¥? = dfgths
223. Application to Bessel’s equation of large order.
Consider Bessel’s equation of order n

wtsht (1 -E—o

a:d:c
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and
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d ¢ d
or Eg(wd——z)%"(xe——-nﬂ).y:&

1f # == ne’, then this equation reduces to

% — n3(l — ¥y = 0.

Comaparing with

d

P=1—e% Oy
AN
{wvnsider the case when » is large and £ is negatwe ao‘t‘hat
¢ is always - ve.

The approximate solutions are '\ ’\:"

\

(1 — e%)y¥ . e¥ and (1 — &%), i
where M

w

92\
- nf a-— eﬂe);dg \\
Jo—an 7 [F=¢]

n
where 8= stech'1 log{n - (a: — 1) }
Now ¥ = e"tﬁ s
A}nﬂ e—ﬂt&nhﬂ

Thusa ip’pmmmately the two solutions are

O e A

2y} n e
WV, and y, = (1 — ;1:’—3) a:"‘{n + (n? — xz)i} gV =,

When z > n the solutions are easily seen to be

(% —1)t.cos L

(% — 1)yt .sin L
Q
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¢
where L=n [ (e¥ — 1)4d¢
A0
b dx
— R L
ﬁjﬂ (x n%) z
Tet Z==nsecz
L = [ n? zdz = nit _—
then jo tan® zdz = n{tan z — z) 6\

80 that the first solution is given approximately b){(};

1
4/{tan z) PN

cos {n(tan z — z}} ’(: ‘
. &
and the second by \(;)&
N\

N\
*”
N
\‘\3‘*
AN &\
A
~O



MISCELLANEOUS EXAMPLES

1. If s solution of the equation

d
Yty =0
is such that when » = 3, ¥ — 0 and y’ = 1, find approximately O
where the maxima and minima of this solution lie, and where itg
zeros ocenr for values of z in the range 3 < & < @, . AN
2, Determine an approximate solution of the type ¥ = A smiz~
16 represent that solution of the equation \/

dy 2 —logz g .
dar T30t loga? T R

Lo d \/
which i such that # = 1, ¥y = 0, d—z = L
AN/

The solution is to be valid for the range 2 >{3:;> 1.
State the accuracy of the solution. N ]
3. Approximate by Jeffreys’ Method\ta the solution of the

eguation A 4
&ty N
p + lﬂsqsgfsm r =0,
&y . N\
where x = 0, ¥ = 0, 5~ = 15
QN |
4. Find s tabu}ated\,gb Wtion of the equation
dy o Y
' .’}“; = 4 sin i 0
AN 7
where 2 =/0\4 =1 for the ran
laces of dedirnals. .
P Inte %g’;hs equation directly and verify your tabulated values
from _ ntegral ohtained, viz.

N

ge 0 <o < 1.0, ecorrect to four

Ay tan ™ = (V2 — L)
~ 5
/ . )
\ 5. If y setisfies the differential squation
dy ¥ =1,
Fr e
dotermine the values of y

subject ta 2z = 0 =0,$=-'%.y=§5 g
e O of 0.04 in the whole range correct to three significant

figures, 236
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6. The function y, tabulated bhelow, satisfies the differential
equation
&y P =1:
d?—l_ vy =1;
determine P(x).
|
x . J o ;_M oz o8 ‘0‘4 s |06 |07 jos |oe ‘1-0 g
v . ‘ 1 |0-9901 0-0808 0-9139| 08521 0-7786] 0-6977| 0:6126] 0-5275 0-4449‘ D588,
7. Ths equation P ,\:\'
diy Y _ o\
P(x)ag—i—m&‘&—y ;'\“‘
is satisfied by & function y, whose values for certain.s.{iﬂﬁés of x are
a3 follows : ¢*
A\ _
€ . .'1‘5 [LH ‘1-7 ‘1‘8 '1-9 |2 v 21 22 {
.. | 52070 ‘ 58124 ! 64883 ' 7-2427 ‘ avosgssl\u‘-nzm 10-0745 | 17-2456 |

Express P{z) as a polyniomial.
8. The equation

’..x\‘

N

= 0 )

is satisfied by a function 4 ,J}éﬁoéa values, for the undermentioned
values of x, are approximately as follows :

z g o |2 [os o6 |os | o ‘
‘y ‘ 1, 1083 ‘ 1377 ‘ 2-054 ‘ 3597 ! 7-389 l

™

Tabu_la.te’thia’:sﬁo.lution of the equation, which is such thab

N
:"\‘.

9. '%hé" differential equation

NS

<

¥(1) — #(0) — 8
¥(0-6) = 2.

%—I—Swy&—&cs):o

. \ W 4
) has the following solution :

x .IO

‘ 02 ‘ 0-4 ‘ 0-6 ‘ 0-8 10

'y | 1-00

‘ 0-990 ‘ 0-937 ‘ 0-806 \ 0-599 | 0-368

Tabulate, at intervals of 0-2, the solution of the equation which
satisfies the conditions

#0} -+ (1) = 2y(0-5)
#0) — (1) = 1.
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1¢. Determine the values of y and g_i at intervals of 0-1 in « for

the renge 10 <z < 2-0 eorrect to four decimal places, given that
y satisfies the equation

2 d
PP oy,

gubject to y =0, 2 =1, dy = @, where P and @ are functions of

da
x tabulated below :
« 10 11 12 13 14 15 LM
P —o5 odoisn | 041067 | —0-38487 | 036715 | —0:33833
@ 1] — 008678 | —0-1527E | —0-20414 | ~0-24400 | FDEITTE
'\’\.’ T
. . 16 17 18 149 a\Y
031250 | —02041Z | —027778 | —0-26316 5025
2. .| —080460 | —0-32800 | —034568 | —0;8615Q | —0-37500
X j]

v

11. Gbtain the solution of the equ&t-'%ptf ’
! * A
gﬁ - (xz; ‘:i—‘.lay = 0:

subject tox =0,y = L, 2 = i, "_y’ = 1-8487, correct to four decimal

places at intervals of 001 id'%. . . .
12, If A is large, find 1) approximate golution to the equation:

(1 + aty A5Quy(1 + 2?) + (1 + a2y + Ry =0,

where x = 0, ¥ =0y = L. . .
13. Sketch yﬂw} E:ytstCm of integral curves of the differential

eguations : )
(1) pf s\ Bpe = 4y — et — de”,
{ii) /1) = d{y — x)-
()P — 17 = 4(y* — 2°)-
(90p? — 2yp + 22 = 0.

"'\: Ex;i.mine in each casc the natu
\integral at the p-discriminant locus.

re of the approximation of the

dw'_ 3 lei
14, E-—x YT

dy _ ., _ ¢

a="""

t=0,x=0,y=0L

Tabulate @ and y over the range 0<¢=<1at i
correct to three decimal places.

tervals of (01
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dix

16. -O,F=x3—~y+e‘
42
d\g =z —y* —e
=0, =0 %0 y—1, ¥
t=0, v=0, Z=0y=1 F=—2
16. If . A
d 1 c
ila%) + e o \f\
(\J
where x == 0 anddv = I when £ = 0, dotermine an exp '}nn for =
& Paly
in ascending powers of %, as far as A%, .\.3 .
a1 dy 6 O
DT 1 \Q

find the lowest value of X which is such th{t'\ is zero at £ = 0 and
¢ = 0-5 but finite within the range. 2.\
158. Determine & lower bound to the{ﬁange of & for which the

sequence

mv

Yor1 — 2 =§ xsin ¥ dx

is convergent, and show tha.@iti‘the limit it satisfies the relation
gb.._ 2 tan” 1es"2,

0'\/\
(O
L\
N\
£ )
AW
P
t;\ml
¢ W
\o/
O
AN
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equation in 2 dimensions for many boundery conditions, easily and quickfy. This
unique book, developed by the British Admiralty, contains scores of geometrical
forms and their transformations for electrical engineers, Joukowski sercfeil for aero-
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PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS
by A. G. Webster

Still one of the most important treatises on partial differential equa-
tions in any language, this comprehensive work by one of America’s
greatest mathematical physicists covers the basic method, theory
and application of partial differential equations. There are clear
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Cauchy’s method 2,
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vibration ™Y
elasticity N
potential theory ™
theory of sound

wave propagation <

heat conduction
and others \ \\

Professor Websiér's work is a keystone book in the tibrary of every
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